Skip to main content

Floral Organ Initiation and Development

  • Chapter
  • First Online:
Plant Developmental Biology - Biotechnological Perspectives

Abstract

Angiosperms exhibit an enormous diversity in inflorescence architecture and flower morphology. Despite this diversity, the genetic networks controlling the development of both structures are largely conserved. The majority of the regulators involved in flower initiation and development are members of the large family of MADS box transcription factors, which are highly conserved in angiosperm species. MADS box proteins function together in dimeric or multimeric protein complexes to control the expression of target genes. The roles of the different proteins in establishing the identity of the floral organs are summarized in the ABCDE and the floral quartet models. This chapter reviews the current knowledge on the molecular processes involved in floral organ initiation and development in angiosperms by means of the model species Arabidopsis. Subsequently, the data from Arabidopsis are compared with available data from other model species to illustrate conservation or divergence in the evolution of the flower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000a) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    CAS  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martinez-Castilla L, Yanofsky MF (2000b) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333

    CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44

    PubMed  CAS  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Dons H, van Tunen AJ (1995a) Functional interaction between the homeotic genes fbp1 and pMADS1 during Petunia floral organogenesis. Plant Cell 7:507–516

    CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons H, van Tunen AJ (1995b) A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell 7:1569–1582

    CAS  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    PubMed  CAS  Google Scholar 

  • Becker A, Winter K-U, Meyer B, Saedler H, Theissen G (2000) MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434

    PubMed  CAS  Google Scholar 

  • Benlloch R, d'Erfurth I, Ferrandiz C, Cosson V, Beltrán JP, Cañas LA, Kondorosi A, Madueño F, Ratet P (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142:972–983

    PubMed  CAS  Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueno F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676

    PubMed  Google Scholar 

  • Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    PubMed  CAS  Google Scholar 

  • Blazquez M, Soowal L, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  CAS  Google Scholar 

  • Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genet 39:901–905

    PubMed  CAS  Google Scholar 

  • Cheng Y, Zhao Y (2007) A role for auxin in flower development. J Integrat Plant Biol 49:99–104

    CAS  Google Scholar 

  • Cheng Y, Dai X, ZhaoY (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    PubMed  CAS  Google Scholar 

  • Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322

    PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons H, Angenent GC, van Tunen AJ (1995) The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Van der Krol AR, Wittich PE, Dons H, Angenent GC (1997) Downregulation of ovule-specific MADS box genes from Petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715

    PubMed  CAS  Google Scholar 

  • Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034

    PubMed  CAS  Google Scholar 

  • de Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    PubMed  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    PubMed  CAS  Google Scholar 

  • Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, An G, Colombo L, Kater MM (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52:690–699

    PubMed  CAS  Google Scholar 

  • Erbar C (2007) Current opinions in flower development and the evo-devo approach in plant phylogeny. Plant Syst Evol 269:107–132

    Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    PubMed  CAS  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky M (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    PubMed  CAS  Google Scholar 

  • Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in Petunia. Plant Cell 15:914–925

    PubMed  CAS  Google Scholar 

  • Ferrario S, Shchennikova AV, Franken J, Immink RGH, Angenent GC (2006) Control of floral meristem determinacy in Petunia by MADS box transcription factors. Plant Physiol 140:890–898

    PubMed  CAS  Google Scholar 

  • Fornara F, Marziani G, Mizzi L, Kater M, Colombo L (2003) MADS-box genes controlling flower development in rice. Plant Biol 5:16–22

    CAS  Google Scholar 

  • Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219

    PubMed  CAS  Google Scholar 

  • Gomez-Mena C, de Folter S, Costa MMR, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438

    PubMed  CAS  Google Scholar 

  • Goto K, Meyerowitz E (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    PubMed  CAS  Google Scholar 

  • Gutierrez-Cortines ME, Davies B (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5:471–476

    PubMed  CAS  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021–2030

    PubMed  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    PubMed  CAS  Google Scholar 

  • Huijser P, Klein J, Lönnig WE, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11:1239–1249

    PubMed  CAS  Google Scholar 

  • Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7:1501–1510

    PubMed  CAS  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    PubMed  CAS  Google Scholar 

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    PubMed  CAS  Google Scholar 

  • Jack T, Brockman L, Meyerowitz E (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    PubMed  CAS  Google Scholar 

  • Jofuku KD, Boer B, Montagu MV, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    PubMed  CAS  Google Scholar 

  • Kater MM, Colombo L, Franken J, Busscher M, Masiero S, Van Lookeren Campagne MM, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182

    PubMed  CAS  Google Scholar 

  • Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling organ identity in flowers. EMBO J 22:1058–1066

    PubMed  CAS  Google Scholar 

  • Kempin S, Savidge B, Yanofsky M (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    PubMed  CAS  Google Scholar 

  • Komaki MK, Okada K, Nishino E, Shimura Y (1988) Isolation and characterization of novel mutants of Arabidopsis thaliana defective in flower development. Development 104:195–203

    Google Scholar 

  • Kramer EM, Jaramillo MA (2005) Genetic basis for innovations in floral organ identity. J Exp Zool B Mol Dev Evol 304B:526–535

    Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    PubMed  CAS  Google Scholar 

  • Kramer EM, Di Stilio VS, Schlüter PM (2003) Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int J Plant Sci 164:1–11

    CAS  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nature Rev Genet 6:688–698

    PubMed  CAS  Google Scholar 

  • Krizek B-A, Meyerowitz E-M (1996) Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc Natl Acad Sci USA 93:4063–4070

    PubMed  CAS  Google Scholar 

  • Kuhlemeier C (2007) Phyllotaxis. Trends Plant Sci 12:143–150

    CAS  Google Scholar 

  • Laufs P, Coen E, Kronenberger J, Traas J, Doonan J (2003) Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development 130:785–796

    PubMed  CAS  Google Scholar 

  • Lawton-Rauh A, Buckler E IV, Purugganan M (1999) Patterns of molecular evolution among paralogous floral homeotic genes. Mol Biol Evol 16:1037–1045

    PubMed  CAS  Google Scholar 

  • Lee H, Suh S-S, Park E, Cho E, Ahn JH, Kim S-G, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    PubMed  CAS  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    PubMed  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    PubMed  CAS  Google Scholar 

  • Litt A (2007) An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages. Int J Plant Sci 168:73–91

    CAS  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    PubMed  CAS  Google Scholar 

  • Maes T, Van de Steene N, Zethof J, Karimi M, D'Hauw M, Mares G, Van Montagu M, Gerats T (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13:229–244

    PubMed  CAS  Google Scholar 

  • Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20:685–693

    PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    PubMed  CAS  Google Scholar 

  • Motte P, Saedler H, Schwarz-Sommer Z (1998) STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development 125:71–84

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Ferrario S, Angenent GC, Kobayashi A, Takatsuji H (2004) PhSUP1 is a Petunia ortholog of Arabidopsis SUPERMAN and plays a distinct role in floral organ morphogenesis. Plant Cell 16:920–932

    PubMed  CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    PubMed  CAS  Google Scholar 

  • Onouchi H, Igeño MI, Périlleux C, Graves K, Coupland G (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12:885–900

    PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    PubMed  CAS  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennet M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    PubMed  CAS  Google Scholar 

  • Riechmann J-L, Krizek B-A, Meyerowitz E-M (1996a) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA 93:4793–4798

    CAS  Google Scholar 

  • Riechmann JL, Wang MQ, Meyerowitz EM (1996b) DNA binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Nucleic Acids Res 24:3134–3141

    CAS  Google Scholar 

  • Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M (2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18:1819–1832

    PubMed  CAS  Google Scholar 

  • Sablowski RWM, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103

    PubMed  CAS  Google Scholar 

  • Samach A, Kohalmi SE, Motte P, Datla R, Haughn GW (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9:559–570

    PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    PubMed  CAS  Google Scholar 

  • Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781

    PubMed  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Hue I, Huijser P, Flor P, Hansen R, Tetens F, Lonnig W, Saedler H, Sommer H (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J 11:251–263

    PubMed  CAS  Google Scholar 

  • Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124:4481–4491

    PubMed  CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1993) Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5:639–655

    PubMed  Google Scholar 

  • Simon R, Igeño MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62

    PubMed  CAS  Google Scholar 

  • Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007a) The ABC model and its applicability to basal angiosperms. Ann Bot 100:155–163

    CAS  Google Scholar 

  • Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J (2007b) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12:358–367

    CAS  Google Scholar 

  • Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125:733–742

    PubMed  CAS  Google Scholar 

  • Sridhar VV, Surendrarao A, Gonzalez D, Conlan RS, Liu Z (2004) Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development. Proc Natl Acad Sci USA 101:11494–11499

    PubMed  CAS  Google Scholar 

  • Stellari GM, Jaramillo MA, Kramer EM (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21:506–519

    PubMed  CAS  Google Scholar 

  • Taylor SA, Hofer JM, Murfet IC, Sollinger JD, Singer SR, Knox MR, Ellis TH (2002) PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol 129:1150–1159

    PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    PubMed  CAS  Google Scholar 

  • Theissen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    CAS  Google Scholar 

  • Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig W, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    PubMed  Google Scholar 

  • Tsuchimoto S, van der Krol AR, Chua NH (1993) Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5:843–853

    PubMed  CAS  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    PubMed  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth D, Yanofsky M, Meyerowitz E (1992) LEAFY controls floral organ meristem identity in Arabidopsis. Cell 69:843–859

    PubMed  CAS  Google Scholar 

  • Wilkinson MD, Haughn GW (1995) UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant Cell 7:1485–1499

    PubMed  CAS  Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    PubMed  CAS  Google Scholar 

  • Yadav SR, Prasad K, Vijayraghavan U (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283–294

    PubMed  CAS  Google Scholar 

  • Yang YZ, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59

    PubMed  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    PubMed  CAS  Google Scholar 

  • Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62

    PubMed  CAS  Google Scholar 

  • Yu H, Ito T, Wellmer F, Meyerowitz EM (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genet 36:157–161

    PubMed  CAS  Google Scholar 

  • Yun J-Y, Weigel D, Lee I (2002) Ectopic expression of SUPERMAN suppresses development of petals and stamens. Plant Cell Physiol 43:52–57

    PubMed  CAS  Google Scholar 

  • Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, dePamphilis CW, Becker A, Theissen G, Ma H (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8:30–45

    PubMed  CAS  Google Scholar 

  • Zhang P, Tan HT, Pwee KH, Kumar PP (2004) Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J 37:566–577

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Angenent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bemer, M., Angenent, G.C. (2010). Floral Organ Initiation and Development. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_9

Download citation

Publish with us

Policies and ethics