Skip to main content

Development and Function of the Female Gametophyte

  • Chapter
  • First Online:
Plant Developmental Biology - Biotechnological Perspectives

Abstract

For many years, the small size of the ovule of Arabidopsis thaliana has impeded the implementation of reliable techniques for the isolation of large amounts of gametophytic cells. Recently, a combination of genetic strategies and technologies for large-scale transcriptional analysis has resulted in the identification of a significant number of genes that are expressed in the female gametophyte. The comparison of transcripts present in wild-type ovules and mutant ovules lacking a fully differentiated female gametophyte has yielded several hundred genes expressed in the female gametophyte. This chapter reviews recent advances in the genetic and molecular understanding of female gametophyte development and function, emphasizing results associated with global approaches that allowed large-scale transcriptional analysis. Based on these recent advances and their biological interpretation, some crucial questions and problems are discussed that remain to be solved in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-García G, Vielle-Calzada J-P (2004) A classical arabinogalactan protein is essential for female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  PubMed  Google Scholar 

  • Boisson-Dernier A, Frietsch S, Kim TH, Dizon MB, Schroeder JI (2008) The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. Curr Biol 18:63–68

    Article  PubMed  CAS  Google Scholar 

  • Bouman F (1984) The ovule. In: Johri BM (ed) The embryology of angiosperms. Springer, Heidelberg New York, pp 123–157

    Google Scholar 

  • Capron A, Serralbo O, Fülöp K, Frugier F, Parmentier Y, Dong A, Lecureuil A, Guerche P, Kondorosi E, Scheres B, Genschik P (2003) The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. Plant Cell 15:2370–2382

    Article  PubMed  CAS  Google Scholar 

  • Cass DD, Peteya DJ, Robertson BL (1985) Megagametophyte development in Hordeum vulgare. 1. Early megagametogenesis and the nature of cell wall formation. Can J Bot 63:2164–2171

    Article  Google Scholar 

  • Chaubal R, Reger BJ (1992) Calcium in the synergids cells and other regions of pearl millet ovaries. Sex Plant Reprod 5:34–46

    Article  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock J (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577

    Article  PubMed  CAS  Google Scholar 

  • Christensen CA, Subramanian S, Drews GN (1998) Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev Biol 202:136–151

    Article  PubMed  CAS  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown, Shawn JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, Andersen RA, Bhattacharya D, Mishler B, McCourt RM (2004) Algal evolution and the early radiation of green plants. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, London, pp 121–137

    Google Scholar 

  • Diboll AG (1968) Fine structural development of the megagametophyte of Zea mays following fertilization. Am J Bot 55:787–806

    Article  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    Article  PubMed  CAS  Google Scholar 

  • Ebel C, Mariconti L, Gruissem W (2004) Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429:776–780

    Article  PubMed  CAS  Google Scholar 

  • Erdelska O (1968) Embryo sac of the species Jasione montana L. studied on living material. Biología 23:753–758

    PubMed  CAS  Google Scholar 

  • Erdelska O (1970) Microcinematographical study of the living embryo sac of Jasione montana. Sb Ved Pr Lek Fak Karlovy Univ Hradci Kralove 13:313–315

    CAS  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE (1990) Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science 247:951–954

    Article  PubMed  CAS  Google Scholar 

  • García-Aguilar M, Dorantes-Acosta A, Pérez-España V, Vielle-Calzada J-P (2005) Whole-mount in situ mRNA localization in developing ovules and seeds of Arabidopsis. Plant Mol Biol Rep 23:279–289

    Article  Google Scholar 

  • García-Hernández M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integrat Genomics 2:239–253

    Article  Google Scholar 

  • Gray-Mitsumune M, Matton DP (2006) The Egg apparatus 1 gene from maize is a member of a large gene family found in both monocots and dicots. Planta 223:618–625

    Article  PubMed  CAS  Google Scholar 

  • Gross-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jürgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidosis. PloS Biol 5:e47

    Article  PubMed  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Sem Cell Dev Biol 9:227–238

    Article  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Guignard L (1899) Sur les anthérozoïdes et la double copulation sexuelle chez les végétaux angiospermiens. C R Acad Sci 128:864–871

    Google Scholar 

  • Guitton AE, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol 15:750–754

    Article  PubMed  CAS  Google Scholar 

  • Guitton A-E, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F (2004) Identification of new members of fertilisation independent seed Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–2981

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:16–27

    Article  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima SY, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  PubMed  CAS  Google Scholar 

  • Huanca-Mamani W, Garcia-Aguilar M, León-Martínez G, Grossniklaus U, Vielle-Calzada JP (2005) CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:17231–17236

    Article  PubMed  CAS  Google Scholar 

  • Huang B-Q, Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6:845–861

    Article  PubMed  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA (1965) The ultrastructure and histochemistry of the synergids of cotton. Am J Bot 52:238–256

    Article  PubMed  CAS  Google Scholar 

  • Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8:R204

    Article  PubMed  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861

    Article  PubMed  CAS  Google Scholar 

  • Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992

    Article  PubMed  CAS  Google Scholar 

  • Kim HU, Li Y, Huang AHC (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089

    Article  PubMed  CAS  Google Scholar 

  • Kwee HS, Sundaresan V (2003) The NOMEGA gene required for female gametophyte development encodes the putative APC6/CDC16 component of the anaphase promoting complex in Arabidopsis. Plant J 36:853–866

    Article  PubMed  CAS  Google Scholar 

  • Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  Google Scholar 

  • Márton M, Dresselhaus T (2008) A comparison of early molecular fertilization mechanisms in animals and flowering plants. Sex Plant Reprod 21:37–52

    Article  Google Scholar 

  • Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576

    Article  PubMed  Google Scholar 

  • Moll C, Von Lyncker L, Zimmerman S, Kägi C, Baumann N, Twell D, Grossniklaus U, Gross-Hardt R (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56:913–921

    Article  Google Scholar 

  • Moore JM, Calzada J-P, Gagliano W, Grossniklaus U (1997) Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harbor Symp Quant Biol 62:35–47

    PubMed  CAS  Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature Cell Biol 8:64–71

    Article  PubMed  CAS  Google Scholar 

  • Nawashin S (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Acad Impér Sci St-Pétersbourg 9:1–6

    Google Scholar 

  • Ohad N, Margossian L, Hsu D-C, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    Article  PubMed  CAS  Google Scholar 

  • Okuda, S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19:3578–3592

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Alandete-Saez, M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:1684–1689

    PubMed  Google Scholar 

  • Peiffer JA, Kaushik S, Sakai H, Arteaga-Vazquez M, Sanchez-Leon N, Ghazal H, Vielle-Calzada JP, Meyers BC (2008) A spatial dissection of the Arabidopsis floral transcriptome by MPSS. BMC Plant Biol 8:43

    Article  PubMed  Google Scholar 

  • Pischke MS, Jones LG, Otsuga D, Fernandez DE, Drews GN, Sussman MR (2002) An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci USA 99:15800–15805

    Article  PubMed  CAS  Google Scholar 

  • Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN (2006) AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18:1862–1872

    Article  PubMed  CAS  Google Scholar 

  • Punwani JA, Drews GN (2008) Development and function of the synergid cell. Sex Plant Reprod 21:7–15

    Article  Google Scholar 

  • Punwani JA, Rabiger DS, Drews GN (2007) MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19:2557–2568

    Article  PubMed  CAS  Google Scholar 

  • Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436

    Article  PubMed  CAS  Google Scholar 

  • Schultz P, Jensen WA (1968) Capsella embryogenesis: the early embryo. J Ultrastruct Res 5:376–392

    Article  Google Scholar 

  • Shi DQ, Liu J, Xiang YH, Ye D, Sundaresan V, Yang WC (2005) SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell 17:2340–2354

    Article  PubMed  CAS  Google Scholar 

  • Springer PS, McCombie WR, Sudaresan V, Martienssen RA (1995) Gene trap tagging of PROLIFERA, an essential MCM2-3-5 like gene in Arabidopsis. Science 268:877–880

    Article  PubMed  CAS  Google Scholar 

  • Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292

    Article  PubMed  CAS  Google Scholar 

  • Sumner MJ, Van Caeseele L (1989) The ultrastructure and cytochemistry of the egg apparatus of Brassica campestris. Can J Bot 67:177–190

    Article  Google Scholar 

  • von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769

    Article  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16:S107–S118

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Swoboda I, Bhalla PL, Singh MB (1999) Male gametic cell-specific gene expression in flowering plants. Proc Natl Acad Sci USA 96:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16:S133–S141

    CAS  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    Article  PubMed  CAS  Google Scholar 

  • Yu HJ, Hogan P, Sundaresan V (2005) Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139:1853–1869

    Google Scholar 

Download references

Acknowledgements

Research in our laboratory is supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT), the Howard Hughes Medical Institute (HHMI), the Consejo Estatal de Ciencia y Tecnología del Estado de Guanajuato (CONCyTEG) and the UC-MEXUS initiative. N.S-L. is a recipient of a Ph.D. fellowship from CONACyT; J.P.V.C. is an International Scholar of HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Vielle-Calzada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sánchez-León, N., Vielle-Calzada, JP. (2010). Development and Function of the Female Gametophyte. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_11

Download citation

Publish with us

Policies and ethics