Skip to main content

Systemic Vascular Leakage Associated with Dengue Infections – The Clinical Perspective

  • Chapter
  • First Online:
Dengue Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 338))

Abstract

Vascular leakage is the most serious complication of dengue infection. However, despite considerable progress in understanding the immunological derangements associated with dengue, the pathogenic mechanisms underlying the change in vascular permeability remain unclear. Lack of suitable model systems that manifest permeability characteristics similar to human vascular endothelium has seriously impeded research in this area. Similarly, limited knowledge of the factors regulating intrinsic microvascular permeability in health, together with limited understanding of the alterations seen in disease states in general, has also hampered progress. Fortunately considerable advances have been made in the field of endothelial biology in recent years, especially following appreciation of the crucial role played by the endothelial surface glycocalyx, acting in concert with underlying cellular structures, in regulating fluid flow across the microvasculature. We review what is known about vascular leakage during dengue infections, particularly in relation to current knowledge of vascular physiology, and discuss potential areas of research that may help to elucidate the complex nature of this singular phenomenon in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cohen SN, Halstead SB (1966) Shock associated with dengue infection. I. Clinical and physiologic manifestations of dengue hemorrhagic fever in Thailand, 1964. J Pediatr 68(3):448–456

    Article  CAS  PubMed  Google Scholar 

  • Nimmannitya S, Halstead SB, Cohen SN, Margiotta MR (1969) Dengue and chikungunya virus infection in man in Thailand, 1962–1964. I. Observations on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg 18(6):954–971

    CAS  PubMed  Google Scholar 

  • Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80(20):10208–10217

    Article  CAS  PubMed  Google Scholar 

  • Bunyaratvej A, Butthep P, Yoksan S, Bhamarapravati N (1997) Dengue viruses induce cell proliferation and morphological changes of endothelial cells. Southeast Asian J Trop Med Public Health 28(Suppl 3):32–37

    PubMed  Google Scholar 

  • Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M (1998) Dengue virus infection of human endothelial cells leads to chemokine production, complement activation and apoptosis. J Immunol 161(11):6338–6346

    CAS  PubMed  Google Scholar 

  • Bonner SM, O'Sullivan MA (1998) Endothelial cell monolayers as a model system to investigate dengue shock syndrome. J Virol Methods 71(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Lin CF, Lei HY, Shiau AL et al (2003) Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol 69(1):82–90

    Article  CAS  PubMed  Google Scholar 

  • Potter DR, Damiano ER (2008) The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 102(7):770–776

    Article  CAS  PubMed  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79(3):703–761

    CAS  PubMed  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92(6):592–594

    Article  PubMed  Google Scholar 

  • Perrin RM, Harper SJ, Bates DO (2007) A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys 49(2):65–72

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Hall JE (2000) The microcirculation and the lymphatic system: capillary fluid exchange, interstitial fluid and lymph flow. In: Guyton AC (ed) Textbook of Medical Physiology, 10th edn. Saunders, WB, pp 162–173

    Google Scholar 

  • Suwanik R, Tuchinda P, Tuchinda S et al (1967) Plasma volume and other third space studies in Thai haemorrhagic fever. Journal of the Medical Association of Thailand 50:48–66

    Google Scholar 

  • Setiawan MW, Samsi TK, Pool TN, Sugianto D, Wulur H (1995) Gallbladder wall thickening in dengue hemorrhagic fever: an ultrasonographic study. J Clin Ultrasound 23(6):357–362

    Article  CAS  PubMed  Google Scholar 

  • Thulkar S, Sharma S, Srivastava DN, Sharma SK, Berry M, Pandey RM (2000) Sonographic findings in grade III dengue hemorrhagic fever in adults. J Clin Ultrasound 28(1):34–37

    Article  CAS  PubMed  Google Scholar 

  • Wu KL, Changchien CS, Kuo CH et al (2004) Early abdominal sonographic findings in patients with dengue fever. J Clin Ultrasound 32(8):386–388

    Article  PubMed  Google Scholar 

  • Venkata Sai PM, Dev B, Krishnan R (2005) Role of ultrasound in dengue fever. Br J Radiol 78(929):416–418

    Article  CAS  PubMed  Google Scholar 

  • Colbert JA, Gordon A, Roxelin R et al (2007) Ultrasound measurement of gallbladder wall thickening as a diagnostic test and prognostic indicator for severe dengue in pediatric patients. Pediatr Infect Dis J 26(9):850–852

    Article  PubMed  Google Scholar 

  • Srikiatkhachorn A, Krautrachue A, Ratanaprakarn W et al (2007) Natural history of plasma leakage in dengue hemorrhagic fever: a serial ultrasonographic study. Pediatr Infect Dis J 26(4):283–290 discussion 91–92

    Article  PubMed  Google Scholar 

  • Statler J, Mammen M, Lyons A, Sun W (2008) Sonographic findings of healthy volunteers infected with dengue virus. J Clin Ultrasound 36(7):413–417

    Article  PubMed  Google Scholar 

  • Gamble J, Gartside IB, Christ F (1993) A reassessment of mercury in silastic strain gauge plethysmography for microvascular permeability assessment in man. J Physiol 464:407–422

    CAS  PubMed  Google Scholar 

  • Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    CAS  PubMed  Google Scholar 

  • Michel CC (1997) Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol 82(1):1–30

    CAS  PubMed  Google Scholar 

  • Gamble J, Bethell D, Day NP et al (2000) Age-related changes in microvascular permeability: a significant factor in the susceptibility of children to shock? Clin Sci (Lond) 98(2):211–216

    Article  CAS  Google Scholar 

  • Bethell DB, Gamble J, Pham PL et al (2001) Noninvasive measurement of microvascular leakage in patients with dengue hemorrhagic fever. Clin Infect Dis 32(2):243–253

    Article  CAS  PubMed  Google Scholar 

  • Sahaphong S, Riengrojpitak S, Bhamarapravati N, Chirachariyavej T (1980) Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 11(2):194–204

    CAS  PubMed  Google Scholar 

  • Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189(8):1411–1418

    Article  PubMed  Google Scholar 

  • Balsitis SJ, Coloma J, Castro G et al (2009) Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg 80(3):416–424

    PubMed  Google Scholar 

  • de Araujo JM, Schatzmayr HG, de Filippis AM et al (2009) A retrospective survey of dengue virus infection in fatal cases from an epidemic in Brazil. J Virol Methods 155(1):34–38

    Article  PubMed  Google Scholar 

  • Adamson RH, Michel CC (1993) Pathways through the intercellular clefts of frog mesenteric capillaries. J Physiol 466:303–327

    CAS  PubMed  Google Scholar 

  • Majno G, Palade GE (1961) Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 11:571–605

    Article  CAS  PubMed  Google Scholar 

  • Michel CC, Neal CR (1999) Openings through endothelial cells associated with increased microvascular permeability. Microcirculation 6(1):45–54

    CAS  PubMed  Google Scholar 

  • Schaeffer RC Jr, Gong F, Bitrick MS Jr, Smith TL (1993) Thrombin and bradykinin initiate discrete endothelial solute permeability mechanisms. Am J Physiol 264(6 Pt 2):H1798–H1809

    CAS  PubMed  Google Scholar 

  • Michel CC, Kendall S (1997) Differing effects of histamine and serotonin on microvascular permeability in anaesthetized rats. J Physiol 501(Pt 3):657–662

    Article  CAS  PubMed  Google Scholar 

  • Myers BD, Guasch A (1993) Selectivity of the glomerular filtration barrier in healthy and nephrotic humans. Am J Nephrol 13(5):311–317

    Article  CAS  PubMed  Google Scholar 

  • Blouch K, Deen WM, Fauvel JP, Bialek J, Derby G, Myers BD (1997) Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am J Physiol 273(3 Pt 2):F430–F437

    CAS  PubMed  Google Scholar 

  • Oragui EE, Nadel S, Kyd P, Levin M (2000) Increased excretion of urinary glycosaminoglycans in meningococcal septicemia and their relationship to proteinuria. Crit Care Med 28(8):3002–3008

    Article  CAS  PubMed  Google Scholar 

  • Garcia S, Morales R, Hunter RF (1995) Dengue fever with thrombocytopenia: studies towards defining vulnerability of bleeding. Bol Asoc Med P R 87(1–2):2–7

    CAS  PubMed  Google Scholar 

  • Wills BA, Oragui EE, Dung NM et al (2004) Size and charge characteristics of the protein leak in dengue shock syndrome. J Infect Dis 190(4):810–818

    Article  CAS  PubMed  Google Scholar 

  • Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278(1):H285–H289

    CAS  PubMed  Google Scholar 

  • Michel CC, Curry FR (2009) Glycocalyx volume: a critical review of tracer dilution methods for its measurement. Microcirculation 16(3):213–219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bridget Wills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trung, D.T., Wills, B. (2010). Systemic Vascular Leakage Associated with Dengue Infections – The Clinical Perspective. In: Rothman, A. (eds) Dengue Virus. Current Topics in Microbiology and Immunology, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02215-9_5

Download citation

Publish with us

Policies and ethics