Skip to main content

Biomechanik der Wirbelsäule

  • Chapter
  • 6159 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams MA, Dolan P. Spine biomechanics. J Biomech 2005; 38: 1972-83

    Article  PubMed  Google Scholar 

  • Adams MA, McNally DS, Dolan P. ›Stress‹ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 1996; 78: 965-72

    Article  PubMed  CAS  Google Scholar 

  • Antonacci MD, Hanson DS, Leblanc A, Heggeness MH. Regional variation in vertebral bone density and trabecular architecture are influenced by osteoarthritic change and osteoporosis. Spine 1997; 22: 2393-401

    Article  PubMed  CAS  Google Scholar 

  • Asmussen E, Klausen K. Form and function of the erect human spine. Clin Orthop 1962; 25: 55-63

    PubMed  CAS  Google Scholar 

  • Banse X, Devogelaer JP, Munting E, et al. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 2001; 28: 563-71

    Article  PubMed  CAS  Google Scholar 

  • Benzel EC. Biomechanically relevant anatomy and material properties of the spine and associated elements. In: Benzel EC. Biomechanics of spine stabilization. New York: Mc Graw Hill 1995

    Google Scholar 

  • Benzel EC. Stability and instability of the spine. In: Benzel EC. Biomechanics of spine stabilization. New York: Mc Graw Hill 1995

    Google Scholar 

  • Bogduk N, Yoganandan N. Biomechanics of the cervical spine Part 3: minor injuries. Clin Biomech (Bristol , Avon ) 2001; 16: 267-75

    Article  CAS  Google Scholar 

  • Brault JR, Wheeler JB, Siegmund GP, Brault EJ. Clinical response of human subjects to rear-end automobile collisions. Arch Phys Med Rehabil 1998; 79: 72-80

    Article  PubMed  CAS  Google Scholar 

  • Briggs AM, Greig AM, Wark JD, et al. A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci 2004; 1: 170-80

    Article  PubMed  Google Scholar 

  • Briggs AM, van Dieen JH, Wrigley TV, et al. Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther 2007; 87: 595-607

    Article  PubMed  Google Scholar 

  • Cappozzo A. Compressive loads in the lumbar vertebral column during normal level walking. J Orthop Res 1984; 1: 292-301

    Article  PubMed  CAS  Google Scholar 

  • Carter JW, Mirza SK, Tencer AF, Ching RP. Canal geometry changes associated with axial compressive cervical spine fracture. Spine 2000; 25: 46-54

    Article  PubMed  CAS  Google Scholar 

  • Chiba M, McLain RF, Yerby SA, et al. Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation 1. Spine 1996; 21: 288-94

    Article  PubMed  CAS  Google Scholar 

  • Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ, III. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J Bone Miner Res 1992; 7: 221-7

    Article  PubMed  CAS  Google Scholar 

  • Cusick JF, Yoganandan N. Biomechanics of the cervical spine 4: major injuries. Clin Biomech (Bristol ,Avon ) 2002; 17: 1-20

    Article  Google Scholar 

  • Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983; 8: 817-31

    Article  PubMed  CAS  Google Scholar 

  • deZee M., Hansen L, Wong C, et al. A generic detailed rigid-body lumbar spine model. J Biomech 2007; 40: 1219-27

    Article  Google Scholar 

  • Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 2007; 40: 612-8

    Article  PubMed  Google Scholar 

  • Dickson JH, Harrington PR, Erwin WD. Harrington instrumentation in the fractured, unstable thoracic & lumbar spine 13. Tex Med 1973; 69: 91-8

    PubMed  CAS  Google Scholar 

  • Duan Y, Parfitt A, Seeman E. Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 1999; 14: 1796-802

    Article  PubMed  CAS  Google Scholar 

  • Ensrud KE, Black DM, Harris F, et al. Correlates of kyphosis in older women. The Fracture Intervention Trial Research Group. J Am Geriatr Soc 1997; 45: 682-7

    PubMed  CAS  Google Scholar 

  • Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 2006; 21: 307-14

    Article  PubMed  Google Scholar 

  • Ewing CL, King AI, Prasad I. Structural considerations of the human vertebral column under +gz impact acceleration. J Aircraft 1972; 9: 84-90

    Article  Google Scholar 

  • Galante JO. Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand 1967; Suppl-91

    Google Scholar 

  • Gertzbein SD. Classification of thoracic and lumbar fractures. In: SD Gertzbein. Fractures of the thoracic and lumbar spine. Baltimore: Williams and Wilkins 1992

    Google Scholar 

  • Gilsanz V, Loro ML, Roe TF, et al. Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 1995; 95: 2332-7

    Article  PubMed  CAS  Google Scholar 

  • Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine 2001; 26: 889-96

    Article  PubMed  CAS  Google Scholar 

  • Hakim NS, King AI. Programmed replication of in situ (whole-body) loading conditions during in vitro (substructure) testing of a vertebral column segment. J Biomech 1976; 9: 629-32

    Article  PubMed  CAS  Google Scholar 

  • Harrington PR, Dickson JH. The development and further prospects of internal fixation of the spine 15. Isr J Med Sci 1973; 9: 773-8

    PubMed  CAS  Google Scholar 

  • Havill LM, Mahaney MC, Binkley TL, Specker BL. Effects of Genes, Gender, Age, and Activity on BMC, Bone Size, and Areal and Volumetric BMD. J Bone Miner Res 2007; 22(5): 737-46

    Article  PubMed  Google Scholar 

  • Holdsworth F. Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 1970; 52: 1534-51

    PubMed  CAS  Google Scholar 

  • Janevic J, shton-Miller JA, Schultz AB. Large compressive preloads decrease lumbar motion segment flexibility. J Orthop Res 1991; 9: 228-36

    Article  PubMed  CAS  Google Scholar 

  • Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 1997; 18: 1897-904

    PubMed  CAS  Google Scholar 

  • Kandziora F, Schnake KJ, Klostermann CK, Haas NP. [Vertebral body replacement in spine surgery]. Unfallchirurg 2004; 107: 354-71

    Article  PubMed  CAS  Google Scholar 

  • Kaptoge S, Reid DM, Scheidt-Nave C, et al. Geographic and other determinants of BMD change in European men and women at the hip and spine. a population-based study from the Network in Europe for Male Osteoporosis (NEMO). Bone 2007; 40: 662-73

    Article  PubMed  CAS  Google Scholar 

  • Kummer B. Biomechanik. Koln, Deutschland: Deutscher Arzteverlag 2005 Lindh M. Biomechanics of the lumbar spine. In: M Nordin, VH Frankel. Basic Biomechanics of the Musculoskeletal System. Philadelphia: Lea and Febiger 1989

    Google Scholar 

  • Magerl F, Aebi M, Gertzbein SD, et al. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994; 3: 184-201

    Article  PubMed  CAS  Google Scholar 

  • McCubbrey DA, Cody DD, Peterson EL, et al. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 1995; 28: 891-9

    Article  PubMed  CAS  Google Scholar 

  • McElhaney JH, Myers BS. Biomechanical aspects of cervical trauma. In: AM Nahum, JW Melvin. Accidental injury:biomechanics and prevention. New York: Springer 1993

    Google Scholar 

  • Melton LJ, Chao EYS, Lane JM. Biomechanical aspects of fractures. In: BL Riggs, LJ Melton. Osteoporosis: Etiology, Diagnosis, and Management. New York: Raven Press 1995

    Google Scholar 

  • Mercer SR. Structure and function of the bones and joints of the cervical spine. In: CA Oatis. Kinesiology: the mechanics and pathomechanics of human movement. Philadelphia, PA: Lippincott Williams & Wilkins 2004

    Google Scholar 

  • Moroney SP, Schultz AB, Miller JA. Analysis and measurement of neck loads. J Orthop Res 1988; 6: 713-20

    Article  PubMed  CAS  Google Scholar 

  • Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture. Spine 1997; 22: 25S-31S

    Article  PubMed  CAS  Google Scholar 

  • Nachemson A, Elfstrom G. Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises. Scand J Rehabil Med Suppl 1970; 1: 1-40

    PubMed  CAS  Google Scholar 

  • Nightingale RW, McElhaney JH, Richardson WJ, Myers BS. Dynamic responses of the head and cervical spine to axial impact loading. J Biomech 1996; 29: 307-18

    Article  PubMed  CAS  Google Scholar 

  • Niosi CA, Oxland TR. Degenerative mechanics of the lumbar spine. Spine J 2004; 4 202S-8S

    Article  PubMed  Google Scholar 

  • Oda T, Panjabi MM. Pedicle screw adjustments affect stability of thoracolumbar burst fracture 3. Spine 2001; 26: 2328-33

    Article  PubMed  CAS  Google Scholar 

  • Pflugmacher R, Schleicher P, Schaefer J, et al. Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine 16. Spine 2004; 29 1413-9

    Article  PubMed  Google Scholar 

  • Reinhold M, Schmoelz W, Canto F, et al. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine 1. Arch Orthop Trauma Surg 2009; 129: 1375-82

    Article  PubMed  CAS  Google Scholar 

  • Resnick DK, Weller SJ, Benzel EC. Biomechanics of the thoracolumbar spine. Neurosurg Clin N Am 1997; 8: 455-69

    PubMed  CAS  Google Scholar 

  • Shea M, Edwards WT, White AA, Hayes WC. Variations of stiffness and strength along the human cervical spine. J Biomech 1991; 24: 95-107

    Article  PubMed  CAS  Google Scholar 

  • Silva MJ, Wang C, Keaveny TM, Hayes WC. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and end- plate. Bone 1994; 15: 409-14

    Article  PubMed  CAS  Google Scholar 

  • Simpson EK, Parkinson IH, Manthey B, Fazzalari NL. Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 2001; 16: 681 -7

    Article  PubMed  CAS  Google Scholar 

  • Skotte JH, Essendrop M, Hansen AF, Schibye B. A dynamic 3D biomechanical evaluation of the load on the low back during different patient-handling tasks. J Biomech 2002; 35: 1357-66

    Article  PubMed  CAS  Google Scholar 

  • Snijders CJ, Hoek van Dijke GA, Roosch ER. A biomechanical model for the analysis of the cervical spine in static postures. J Biomech 1991; 24: 78392

    Article  PubMed  CAS  Google Scholar 

  • White AA, III, Panjabi MM. Update on the evaluation of instability of the lower cervical spine. Instr Course Lect 1987; 36: 513-20

    PubMed  Google Scholar 

  • Whitesides TE, Jr. Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res 1977; 78-92

    Google Scholar 

  • Wilke H, Neef P, Hinz B, et al. Intradiscal pressure together with anthropometric data - a data set for the validation of models. Clin Biomech (Bristol, Avon) 2001; 16(1): S111-S126

    Article  Google Scholar 

  • Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999; 24: 755-62

    Article  PubMed  CAS  Google Scholar 

  • Wilke HJ, Wolf S, Claes LE, et al. Influence of varying muscle forces on lumbar intradiscal pressure: an in vitro study. J Biomech 1996; 29: 549-55

    Article  PubMed  CAS  Google Scholar 

  • Yoganandan N, Pintar FA, Maiman DJ, et al. Human head-neck biomechanics under axial tension. Med Eng Phys 1996; 18: 289-94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Augat, P. (2013). Biomechanik der Wirbelsäule. In: Bühren, V., Josten, C. (eds) Chirurgie der verletzten Wirbelsäule. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02208-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02208-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02207-4

  • Online ISBN: 978-3-642-02208-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics