Skip to main content

Soluble Guanylyl Cyclase: The Nitric Oxide Receptor

  • Chapter
  • First Online:
Signal Transduction: Pathways, Mechanisms and Diseases
  • 1850 Accesses

Abstract

Nitric oxide (NO) plays a significant role in vasodilation, platelet aggregation, neurotransmission and many other physiological processes, and in most of these cases it works through activation of soluble guanylyl cyclase and elevation of cyclic GMP concentration. Soluble guanylyl cyclase is a heterodimeric protein made up of one α and one β subunit. The β subunit has one molecule of heme attached to it through a histidine residue. NO activates the enzyme by binding to the heme iron and weakening its bond to the histidine. Carbon monoxide activates the enzyme only marginally, but can activate to the level achieved by NO in the presence of allosteric regulators such as YC-1. Upon dissociation of NO, the enzyme becomes deactivated. In some cells, exposure to NO may result in rapid desensitization of the enzyme, thus preventing undesirable consequences of continued, unabated cyclic GMP production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Azam M et al (1998) Genetic mapping of soluble guanylyl cyclase genes: implications for linkage to blood pressure in the Dahl rat. Hypertension 32(1):149–154

    CAS  PubMed  Google Scholar 

  • Bailly C (1998) Transducing pathways involved in the control of NaCl reabsorption in the thick ascending limb of Henle’s loop. Kidney Int Suppl 65:S29–S35

    CAS  PubMed  Google Scholar 

  • Behrends S, Vehse K (2000) The beta (2) subunit of soluble guanylyl cyclase contains a human-specific frameshift and is expressed in gastric carcinoma. Biochem Biophys Res Commun 271(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Bellamy TC et al (2000) Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci USA 97(6):2928–2933

    Article  CAS  PubMed  Google Scholar 

  • Bellamy TC, Wood J, Garthwaite J (2002) On the activation of soluble guanylyl cyclase by nitric oxide. Proc Natl Acad Sci USA 99(1):507–510

    Article  CAS  PubMed  Google Scholar 

  • Bivalacqua TJ et al (2000) Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related erectile dysfunction in the rat. Int J Impot Res 12(Suppl. 3):S8–S17

    Article  PubMed  Google Scholar 

  • Boulton CL, Southam E, Garthwaite J (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69(3):699–703

    Article  CAS  PubMed  Google Scholar 

  • Brandes RP et al (2000) Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice: role of soluble guanylyl cyclase. Hypertension 35(1 Pt 2):231–236

    CAS  PubMed  Google Scholar 

  • Brandish PE, Buechler W, Marletta MA (1998) Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: acceleration by thiols and oxyhemoglobin. Biochemistry 37(48):16898–16907

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Breer H, Shepherd GM (1993) Implications of the NO/cGMP system for olfaction. Trends Neurosci 16(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Brune B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32(4):497–504

    CAS  PubMed  Google Scholar 

  • Burstyn JN et al (1995) Studies of the heme coordination and ligand binding properties of soluble guanylyl cyclase (sGC): characterization of Fe(II) sGC and Fe(II) sGC(CO) by electronic absorption and magnetic circular dichroism spectroscopies and failure of CO to activate the enzyme. Biochemistry 34(17):5896–5903

    Article  CAS  PubMed  Google Scholar 

  • Cary SP, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci USA 102(37):13064–13069

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ et al (2001) 17beta-estradiol inhibits soluble guanylate cyclase activity through a protein tyrosine phosphatase in PC12 cells. J Steroid Biochem Mol Biol 78(5):451–458

    Article  CAS  PubMed  Google Scholar 

  • Cherry PD et al (1982) Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 79(6):2106–2110

    Article  CAS  PubMed  Google Scholar 

  • Chinkers M, Wilson EM (1992) Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem 267(26):18589–18597

    CAS  PubMed  Google Scholar 

  • Derbyshire ER, Marletta MA (2007) Butyl isocyanide as a probe of the activation mechanism of soluble guanylate cyclase. Investigating the role of non-heme nitric oxide. J Biol Chem 282(49):35741–35748

    Article  CAS  PubMed  Google Scholar 

  • Dierks EA, Burstyn JN (1998) The deactivation of soluble guanylyl cyclase by redox-active agents. Arch Biochem Biophys 351(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Dizhoor AM (2000) Regulation of cGMP synthesis in photoreceptors: role in signal transduction and congenital diseases of the retina. Cell Signal 12(11–12):711–719

    Article  CAS  PubMed  Google Scholar 

  • Ferrero R et al (2000) Nitric oxide-sensitive guanylyl cyclase activity inhibition through cyclic GMP-dependent dephosphorylation. J Neurochem 75(5):2029–2039

    Article  CAS  PubMed  Google Scholar 

  • Forstermann U et al (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2):1121–1131

    CAS  PubMed  Google Scholar 

  • Friebe A, Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53(1):123–127

    CAS  PubMed  Google Scholar 

  • Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. Embo J 15(24):6863–6868

    CAS  PubMed  Google Scholar 

  • Friebe A et al (1997) Functions of conserved cysteines of soluble guanylyl cyclase. Biochemistry 36(6):1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Friebe A et al (1999) A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme: implications for the YC-1 binding site? Biochemistry 38(46):15253–15257

    Article  CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  PubMed  Google Scholar 

  • Gerzer R et al (1981) Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132(1):71–74

    Article  CAS  PubMed  Google Scholar 

  • Gibb BJ, Wykes V, Garthwaite J (2003) Properties of NO-activated guanylyl cyclases expressed in cells. Br J Pharmacol 139(5):1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Gibson AD, Garbers DL (2000) Guanylyl cyclases as a family of putative odorant receptors. Annu Rev Neurosci 23:417–439

    Article  CAS  PubMed  Google Scholar 

  • Gupta G et al (1997) The beta2 subunit inhibits stimulation of the alpha1/beta1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure. J Clin Invest 100(6):1488–1492

    CAS  Google Scholar 

  • Harteneck C et al (1990) Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett 272(1–2):221–223

    Article  CAS  PubMed  Google Scholar 

  • Harteneck C et al (1991) Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett 292(1–2):217–222

    CAS  Google Scholar 

  • Huganir RL, Greengard P (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5(5):555–567

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ et al (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 218(3):739–749

    CAS  PubMed  Google Scholar 

  • Ignarro LJ et al (1982a) Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta 718(1):49–59

    CAS  PubMed  Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1982b) Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA 79(9):2870–2873

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1984) Regulation of purified soluble guanylate cyclase by porphyrins and metalloporphyrins: a unifying concept. Adv Cyclic Nucleotide Protein Phosphorylation Res 17:267–274

    CAS  PubMed  Google Scholar 

  • Ignarro LJ et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269

    Article  CAS  PubMed  Google Scholar 

  • Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19(3):96–101

    Article  CAS  PubMed  Google Scholar 

  • Kaehler ST et al (1999) Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res 835(2):346–349

    Article  CAS  PubMed  Google Scholar 

  • Karow DS et al (2005) Characterization of functional heme domains from soluble guanylate cyclase. Biochemistry 44(49):16266–16274

    Article  CAS  PubMed  Google Scholar 

  • Katsuki S et al (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3(1):23–35

    CAS  PubMed  Google Scholar 

  • Kharitonov VG et al (1997a) Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry 36(22):6814–6818

    Article  CAS  PubMed  Google Scholar 

  • Kharitonov VG et al (1997b) Dissociation of nitric oxide from soluble guanylate cyclase. Biochem Biophys Res Commun 239(1):284–286

    Article  CAS  PubMed  Google Scholar 

  • Kharitonov VG et al (1999) Kinetics and equilibria of soluble guanylate cyclase ligation by CO: effect of YC-1. Biochemistry 38(33):10699–10706

    Article  CAS  PubMed  Google Scholar 

  • Ko FN et al (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84(12):4226–4233

    CAS  PubMed  Google Scholar 

  • Koesling D et al (1988) The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase. FEBS Lett 239(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Koesling D et al (1990) The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung. Homology between the two subunits of the enzyme. FEBS Lett 266(1–2):128–132

    CAS  Google Scholar 

  • Koglin M et al (2001) Nitric oxide activates the beta 2 subunit of soluble guanylyl cyclase in the absence of a second subunit. J Biol Chem 276(33):30737–30743

    Article  CAS  PubMed  Google Scholar 

  • Lawson DM et al (2003) A two-faced molecule offers NO explanation: the proximal binding of nitric oxide to haem. Biochem Soc Trans 31(Pt 3):553–557

    CAS  PubMed  Google Scholar 

  • Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. Faseb J 7(2):328–338

    CAS  PubMed  Google Scholar 

  • Liu Y et al (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci USA 94(25):13414–13419

    Article  CAS  PubMed  Google Scholar 

  • Louis JC, Revel MO, Zwiller J (1993) Activation of soluble guanylate cyclase through phosphorylation by protein kinase C in intact PC12 cells. Biochim Biophys Acta 1177(3):299–306

    Article  CAS  PubMed  Google Scholar 

  • Lucas KA et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414

    CAS  PubMed  Google Scholar 

  • Margulis A, Sitaramayya A (2000) Rate of deactivation of nitric oxide-stimulated soluble guanylate cyclase: influence of nitric oxide scavengers and calcium. Biochemistry 39(5):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Marsh N, Marsh A (2000) A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin Exp Pharmacol Physiol 27(4):313–319

    Article  CAS  PubMed  Google Scholar 

  • Moncada S et al (1991) Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 88(6):2166–2170

    Article  CAS  PubMed  Google Scholar 

  • Moro MA et al (1996) cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA 93(4):1480–1485

    Article  CAS  PubMed  Google Scholar 

  • Mullershausen F, Koesling D, Friebe A (2005) NO-sensitive guanylyl cyclase and NO-induced feedback inhibition in cGMP signaling. Front Biosci 10:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Mullershausen F et al (2006) Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mol Pharmacol 69(6):1969–1974

    Article  CAS  PubMed  Google Scholar 

  • Murthy KS (2001) Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem J 360(Pt 1):199–208

    Article  CAS  PubMed  Google Scholar 

  • Parma J et al (1991) Sequence of a human brain adenylyl cyclase partial cDNA: evidence for a consensus cyclase specific domain. Biochem Biophys Res Commun 179(1):455–462

    Article  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148(3):1482–1489

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Garthwaite J (2006) Nitric oxide activation of guanylyl cyclase in cells revisited. Proc Natl Acad Sci USA 103(32):12185–12190

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Halvey EJ, Garthwaite J (2008) An enzyme-linked receptor mechanism for nitric oxide-activated guanylyl cyclase. J Biol Chem 283(27):18841–18851

    Article  CAS  PubMed  Google Scholar 

  • Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. Embo J 23(22):4443–4450

    Article  CAS  PubMed  Google Scholar 

  • Russwurm M et al (1998) Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 335(Pt 1):125–130

    CAS  PubMed  Google Scholar 

  • Russwurm M, Wittau N, Koesling D (2001) Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes. J Biol Chem 276(48):44647–44652

    Article  CAS  PubMed  Google Scholar 

  • Sayed N et al (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci USA 104(30):12312–12317

    Article  CAS  PubMed  Google Scholar 

  • Schrammel A et al (1996) Characterization of 1H-[1, 2, 4]oxadiazolo[4, 3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 50(1):1–5

    CAS  PubMed  Google Scholar 

  • Semple-Rowland SL et al (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci USA 95(3):1271–1276

    Article  CAS  PubMed  Google Scholar 

  • Sitaramayya A (2002) Soluble guanylate cyclases in the retina. Mol Cell Biochem 230(1–2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Southam E, Garthwaite J (1993) The nitric oxide-cyclic GMP signalling pathway in rat brain. Neuropharmacology 32(11):1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Stasch JP et al (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410(6825):212–215

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Marletta MA (1994) Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 33(18):5636–5640

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Marletta MA (1995) The ferrous heme of soluble guanylate cyclase: formation of hexacoordinate complexes with carbon monoxide and nitrosomethane. Biochemistry 34(50):16397–16403

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Marletta MA (1996) Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35(4):1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Marletta MA (1998) Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol 5(5):255–261

    Article  CAS  Google Scholar 

  • Stone JR et al (1995) Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinate nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun 207(2):572–577

    Article  CAS  PubMed  Google Scholar 

  • Wedel B et al (1994) Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA 91(7):2592–2596

    Article  CAS  PubMed  Google Scholar 

  • Wedel B et al (1995) Functional domains of soluble guanylyl cyclase. J Biol Chem 270(42):24871–24875

    Article  CAS  PubMed  Google Scholar 

  • Yu H et al (1999) Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. J Biol Chem 274(22):15547–15555

    Article  CAS  PubMed  Google Scholar 

  • Yuen PS, Potter LR, Garbers DL (1990) A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry 29(49):10872–10878

    Article  CAS  PubMed  Google Scholar 

  • Yuen PS, Doolittle LK, Garbers DL (1994) Dominant negative mutants of nitric oxide-sensitive guanylyl cyclase. J Biol Chem 269(2):791–793

    CAS  PubMed  Google Scholar 

  • Zhao Y, Marletta MA (1997) Localization of the heme binding region in soluble guanylate cyclase. Biochemistry 36(50):15959–15964

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y et al (1998) Structural changes in the heme proximal pocket induced by nitric oxide binding to soluble guanylate cyclase. Biochemistry 37(36):12458–12464

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y et al (1999) A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci USA 96(26):14753–14758

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Gunn C, Beckman JS (1992) Bactericidal activity of peroxynitrite. Arch Biochem Biophys 298(2):452–457

    Article  CAS  PubMed  Google Scholar 

  • Zwiller J, Revel MO, Malviya AN (1985) Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J Biol Chem 260(3):1350–1353

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Sitaramayya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koesling, D., Sitaramayya, A. (2010). Soluble Guanylyl Cyclase: The Nitric Oxide Receptor. In: Sitaramayya, A. (eds) Signal Transduction: Pathways, Mechanisms and Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02112-1_18

Download citation

Publish with us

Policies and ethics