Skip to main content

Practical Designs of Brain–Computer Interfaces Based on the Modulation of EEG Rhythms

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

A brain–computer interface (BCI) is a communication channel which does not depend on the brain’s normal output pathways of peripheral nerves and muscles [1–3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter “Brain Signals for Brain–Computer Interfaces”. These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, Brain-computer interfaces for communication and control. Clin Neurophysiol, 113, 6, 767–791, (2002).

    Article  PubMed  Google Scholar 

  2. M.A. Lebedev and M.A.L. Nicolelis, Brain-machine interfaces: past, present and future. Trends Neurosci, 29(9), 536–546, (2006).

    Article  CAS  PubMed  Google Scholar 

  3. N. Birbaumer, Brain-computer-interface research: Coming of age. Clin Neurophysiol, 117(3), 479–483, (2006).

    Article  PubMed  Google Scholar 

  4. G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication. Proc IEEE, 89(7), 1123–1134, (2001).

    Article  Google Scholar 

  5. T. Kluge and M. Hartmann, Phase coherent detection of steady-state evoked potentials: experimental results and application to brain-computer interfaces. Proceedings of 3rd International IEEE EMBS Neural Engineering Conference, Kohala Coast, Hawaii, USA, pp. 425–429, 2–5 May, (2007).

    Google Scholar 

  6. S. Makeig, M. Westerfield, T.P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T.J. Sejnowski, Dynamic brain sources of visual evoked responses. Science, 295(5555), 690–694, (2002).

    Article  CAS  PubMed  Google Scholar 

  7. E. Niedermeyer and F.H. Lopes da Silva, Electroencephalography: Basic principles, clinical applications and related fields, Williams and Wilkins, Baltimore, MD, (1999).

    Google Scholar 

  8. Y. Wang, X. Gao, B. Hong, C. Jia, and S. Gao, Brain-computer interfaces based on visual evoked potentials: Feasibility of practical system designs. IEEE EMB Mag, 27(5), 64–71, (2008).

    Article  CAS  Google Scholar 

  9. A.C. MettingVanRijn, A.P. Kuiper, T.E. Dankers, and C.A. Grimbergen, Low-cost active electrode improves the resolution in biopotential recordings. Proceedings of 18th International IEEE EMBS Conference, Amsterdam, Netherlands, pp. 101–102, 31 Oct–3 Nov, (1996).

    Google Scholar 

  10. J.R. Wolpaw and D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA, 101(51), 17849–17854, (2004).

    Article  CAS  PubMed  Google Scholar 

  11. B. Blankertz, K.R. Muller, D.J. Krusienski, G. Schalk, J.R. Wolpaw, A. Schlogl, G. Pfurtscheller, J.D.R. Millan, M. Schroder, and N. Birbaumer, The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehab Eng, 14(2), 153–159, (2006).

    Article  Google Scholar 

  12. G. Pfurtscheller and F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles., Clin Neurophysiol, 110(11), 1842–1857, (1999).

    Article  CAS  PubMed  Google Scholar 

  13. D.J. McFarland, C.W. Anderson, K.R. Muller, A. Schlogl, and D.J. Krusienski, BCI Meeting 2005 – Workshop on BCI signal processing: Feature extraction and translation. IEEE Trans Neural Syst Rehab Eng, 14(2), 135–138, (2006).

    Article  Google Scholar 

  14. J.J. Vidal, Real-time detection of brain events in EEG. Proc. IEEE, 65(5), 633–641, (1977).

    Article  Google Scholar 

  15. E.E. Sutter, The brain response interface: communication through visually-induced electrical brain response. J Microcomput Appl, 15(1), 31–45, (1992).

    Article  Google Scholar 

  16. M. Middendorf, G. McMillan, G. Calhoun, and K.S. Jones, Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng, 8(2), 211–214, (2000).

    Article  CAS  PubMed  Google Scholar 

  17. M. Cheng, X.R. Gao, S.G. Gao, and D.F. Xu, Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng, 49(10), 1181–1186, (2002).

    Article  PubMed  Google Scholar 

  18. X. Gao, D. Xu, M. Cheng, and S. Gao, A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng, 11(2), 137–140, (2003).

    Article  PubMed  Google Scholar 

  19. B. Allison, D. McFarland, G. Schalk, S. Zheng, M. Jackson, and J. Wolpaw, Towards an independent brain–computer interface using steady state visual evoked potentials. Clin Neurophysiol, 119(2), 399–408, (2007).

    Article  Google Scholar 

  20. F. Guo, B. Hong, X. Gao, and S. Gao, A brain–computer interface using motion-onset visual evoked potential. J Neural Eng, 5(4), 477–485, (2008).

    Article  PubMed  Google Scholar 

  21. Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 14(2), 234–239, (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Wang, R. Wang, X. Gao, and S. Gao, Brain-computer interface based on the high frequency steady-state visual evoked potential. Proceedings of 1st International NIC Conference, Wuhan, China, pp. 37–39, 26–28 May, (2005).

    Google Scholar 

  23. G.R. Müller-Putz, R. Scherer, C. Brauneis, and C. Pfurtscheller, Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng, 2(4), 123–130, (2005).

    Article  PubMed  Google Scholar 

  24. J.P. Lachaux, E. Rodriguez, J. Martinerie, and F.J. Varela, Measuring phase synchrony in brain signals. Hum Brain Mapp, 8(4), 194–208, (1999).

    Article  CAS  PubMed  Google Scholar 

  25. E. Gysels and P. Celka, Phase synchronization for the recognition of mental tasks in a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 12(4), 406–415, (2004).

    Article  PubMed  Google Scholar 

  26. Y. Wang, B. Hong, X. Gao, and S. Gao, Phase synchrony measurement in motor cortex for classifying single-trial EEG during motor imagery. Proceedings of 28th International IEEE EMBS Conference, New York, USA, pp. 75–78, 30 Aug–3 Sept, (2006).

    Google Scholar 

  27. Y. Wang, B. Hong, X. Gao, and S. Gao, Implementation of a brain-computer interface based on three states of motor imagery. Proceedings of 29th International IEEE EMBS Conference, Lyon, France, pp. 5059–5062, 23–26 Aug, (2007).

    Google Scholar 

  28. M.F. Bear, B.W. Connors, and M.A. Paradiso, Neuroscience: exploring the brain, Lippincott Williams and Wilkins, Baltimore, MD, (2001).

    Google Scholar 

  29. Y. Wang, B. Hong, X. Gao, and S. Gao, Design of electrode layout for motor imagery based brain-computer interface. Electron Lett, 43(10), 557–558, (2007).

    Article  Google Scholar 

  30. B. Lou, B. Hong, X. Gao, and S. Gao, Bipolar electrode selection for a motor imagery based brain-computer interface. J Neural Eng, 5(3), 342–349, (2008).

    Article  PubMed  Google Scholar 

  31. S.G. Mason, A. Bashashati, M. Fatourechi, K.F. Navarro, and G.E. Birch, A comprehensive survey of brain interface technology designs. Ann Biomed Eng, 35(2), 137–169, (2007).

    Article  CAS  PubMed  Google Scholar 

  32. C. Jia, H. Xu, B. Hong, X. Gao, and S. Gao, A human computer interface using SSVEP-based BCI technology. Lect Notes Comput Sci, 4565, 113–119, (2007).

    Article  Google Scholar 

  33. E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A, Fourkas, and N. Birbaumer, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39(3), 910–917, (2008).

    Article  PubMed  Google Scholar 

  34. A. Kubler, V.K. Mushahwar, L.R. Hochberg, and J.P. Donoghue, BCI Meeting 2005 – Workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng, 14(2), 131–134, (2006).

    Article  CAS  PubMed  Google Scholar 

  35. S. de Vries and T. Mulder, Motor imagery and stroke rehabilitation: A critical discussion. J Rehabil Med, 39(1), 5–13, (2007).

    Article  PubMed  Google Scholar 

  36. D. Ertelt, S. Small, A. Solodkin, C. Dettmers, A. McNamara, F. Binkofski, and G. Buccino, Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage, 36(suppl 2), T164–T173, (2007).

    Article  PubMed  Google Scholar 

  37. M. Iacoboni and J.C. Mazziotta, Mirror neuron system: Basic findings and clinical applications. Ann Neurol, 62(3), 213–218, (2007).

    Article  PubMed  Google Scholar 

  38. J.A. Pineda, D.S. Silverman, A. Vankov, and J. Hestenes, Learning to control brain rhythms: making a brain-computer interface possible. IEEE Trans Neural Syst Rehabil Eng, 11(2), 181–184, (2003).

    Article  PubMed  Google Scholar 

  39. E.C. Lalor, S.P. Kelly, C. Finucane, R. Burke, R. Smith, R.B. Reilly, and G. McDarby, Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J Appl Signal Process, 19, 3156–3164, (2005).

    Google Scholar 

  40. Emotiv headset (2010). Emotiv – brain computer interface technology. Website of Emotiv Systems Inc., http://www.emotiv.com Accessed 14 Sep 2010.

  41. NeuroSky mindset (2010). Website of Neurosky Inc., http://www.neurosky.com Accessed 14 Sep 2010.

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (30630022) and the Science and Technology Ministry of China under Grant 2006BAI03A17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangkai Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Y., Gao, X., Hong, B., Gao, S. (2009). Practical Designs of Brain–Computer Interfaces Based on the Modulation of EEG Rhythms. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics