Skip to main content

Distributed Continuous Action Recognition Using a Hidden Markov Model in Body Sensor Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5516))

Abstract

One important application of Body Sensor Networks is action recognition. Action recognition often implicitly requires partitioning the sensor data into intervals, then labeling the partitions according to the actions each represents or as a non-action. The temporal partitioning stage is called segmentation and the labeling is called classification. While many effective methods exist for classification, segmentation remains problematic. We present a technique inspired by continuous speech recognition that combines segmentation and classification using Hidden Markov Models. This technique is distributed and only involves limited data sharing between sensor nodes. We show the results of this technique and the bandwidth savings over full data transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hausdorff, J., Cudkowicz, M., Firtion, R., Wei, J., Goldberger, A.: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 13(3), 428–437 (1998)

    Article  Google Scholar 

  2. Aminian, K., Najafi, B., Büla, C., Leyvraz, P., Robert, P.: Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. Journal of Biomechanics 35(5), 689–699 (2002)

    Article  Google Scholar 

  3. Nait-Charif, H., McKenna, S.: Activity summarisation and fall detection in a supportive home environment. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 4 (2004)

    Google Scholar 

  4. Castelli, G., Rosi, A., Mamei, M., Zambonelli, F.: A Simple Model and Infrastructure for Context-Aware Browsing of the World. In: IEEE International Conference on Pervasive Computing and Communications, pp. 229–238 (2007)

    Google Scholar 

  5. Ward, J., Lukowicz, P., Tröster, G., Starner, T.: Activity Recognition of Assembly Tasks Using Body-Worn Microphones and Accelerometers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1553–1567 (2006)

    Google Scholar 

  6. Ghasemzadeh, H., Guenterberg, E., Gilani, K., Jafari, R.: Action coverage formulation for power optimization in body sensor networks. In: Design Automation Conference, ASPDAC 2008, Asia and South Pacific, pp. 446–451 (2008)

    Google Scholar 

  7. Lv, F., Nevatia, R.: Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class AdaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, p. 359. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Bao, L., Intille, S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Bao, L.: Physical Activity Recognition from Acceleration Data under Semi-Naturalistic Conditions. PhD thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  10. Van Laerhoven, K., Gellersen, H.: Spine versus Porcupine: a Study in Distributed Wearable Activity Recognition. In: Proc. of the Eighth IEEE Intl. Symposium on Wearable Computers, vol. 1, pp. 142–149

    Google Scholar 

  11. Courses, E., Surveys, T., View, T.: Analysis of low resolution accelerometer data for continuous human activity recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 2008, pp. 3337–3340 (2008)

    Google Scholar 

  12. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A hybrid discriminative/generative approach for modeling human activities. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI 2005) (2005)

    Google Scholar 

  13. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  14. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: Proceedings of the 4th international symposium on Information processing in sensor networks. IEEE Press, Piscataway (2005)

    Google Scholar 

  15. Rabiner, L., Juang, B.: An introduction to hidden Markov models. ASSP Magazine, IEEE 3(1 Part 1), 4–16 (1986)

    Article  Google Scholar 

  16. Jurafsky, D., Martin, J., Kehler, A., Vander Linden, K., Ward, N.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Lee, H., Kim, J.: An HMM-Based Threshold Model Approach for Gesture Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 961–973 (1999)

    Google Scholar 

  18. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  Google Scholar 

  19. Hartigan, J., Wong, M.: A K-means clustering algorithm. JR Stat. Soc. Ser. C-Appl. Stat. 28, 100–108 (1979)

    MATH  Google Scholar 

  20. Fraley, C., Raftery, A.: How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis. The Computer Journal 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  21. Figueiredo, M., Jain, A.: Unsupervised Learning of Finite Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 381–396 (2002)

    Google Scholar 

  22. Stoica, P., Selen, Y.: Model-order selection: a review of information criterion rules. Signal Processing Magazine, IEEE 21(4), 36–47 (2004)

    Article  Google Scholar 

  23. Biem, A.: A model selection criterion for classification: Application to hmm topology optimization. In: Seventh International Conference on Document Analysis and Recognition, vol. 1, pp. 104–108 (2003)

    Google Scholar 

  24. Yang, A., Jafari, R., Sastry, S., Bajcsy, R.: Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks. Journal of Ambient Intelligence and Smart Environments 1, 1–5 (2009)

    Google Scholar 

  25. Yoon, H., Lee, J., Yang, H.: An online signature verification system using hidden Markov model in polar space. In: Proceedings of Eighth International Workshop on Frontiers in Handwriting Recognition, 2002, pp. 329–333 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guenterberg, E., Ghasemzadeh, H., Loseu, V., Jafari, R. (2009). Distributed Continuous Action Recognition Using a Hidden Markov Model in Body Sensor Networks. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics