Skip to main content

Item Weighting Techniques for Collaborative Filtering

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 220))

Abstract

Collaborative Filtering (CF) recommender systems generate rating predictions for a target user by exploiting the ratings of similar users. Therefore, the computation of user-to-user similarity is an important element in CF; it is used in the neighborhood formation and rating prediction steps. In this paper we investigate the role of item weighting techniques. An item weight provides a measure of the importance of an item for predicting the rating of another item and it is computed as a correlation coefficient between the two items’ rating vectors. In this paper we analyze a wide range of item weighting schemas. Moreover, we introduce an item filtering approach, based on item weighting, that works by discarding in the user-touser similarity computation the items with the smallest weights.We assume that the items with smallest weights are the least useful for generating the prediction. We have evaluated the proposed methods using two datasets (MovieLens and Yahoo!) and identified the conditions for their best application in CF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems 23(1), 103–145 (2005)

    Article  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  3. Aha, D.W.: Feature weighting for lazy learning algorithms. In: Feature extraction, construction and selection: a data mining perspective, vol. SECS 453, pp. 13–32. Kluwer Academic, Boston (1998)

    Google Scholar 

  4. Baltrunas, L., Ricci, F.: Dynamic item weighting and selection for collaborative filtering. In: Berendt, B., Mladenic, D., Semeraro, G., Spiliopoulou, M., Stumme, G., Svatek, V., Zelezny, F. (eds.) Web Mining 2.0 International Workshop located at the ECML/PKDD 2007, pp. 135–146 (2007)

    Google Scholar 

  5. Baltrunas, L., Ricci, F.: Locally adaptive neighborhood selection for collaborative filtering recommendations. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 22–31. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-domain mediation in collaborative filtering. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS, vol. 4511, pp. 355–359. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: Shavlik, J.W. (ed.) ICML, pp. 46–54. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  8. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: Cooper, G.F., Moral, S. (eds.) UAI, pp. 43–52. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  9. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  10. Geng, X., Liu, T.Y., Qin, T., Li, H.: Feature selection for ranking. In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 407–414. ACM, New York (2007)

    Chapter  Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical Sciences). The Johns Hopkins University Press (1996)

    Google Scholar 

  12. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR, pp. 230–237. ACM, New York (1999)

    Chapter  Google Scholar 

  13. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 5–53 (2004)

    Article  Google Scholar 

  14. Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 337–344. ACM Press, New York (2004)

    Google Scholar 

  15. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  MATH  Google Scholar 

  16. Langley, P.: Selection of relevant features in machine learning. In: Proceedings of the AAAI Fall Symposium on Relevance. AAAI Press, Menlo Park (1994)

    Google Scholar 

  17. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  18. MovieLens dataset, http://www.grouplens.org/

  19. Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: KDD 2005: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 239–248. ACM Press, New York (2005)

    Chapter  Google Scholar 

  20. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)

    Article  Google Scholar 

  21. Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York (1986)

    Google Scholar 

  22. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems – a case study. In: Proceedings of the WebKDD 2000 Workshop at the ACM-SIGKDD Conference on Knowledge Discovery in Databases (2000)

    Google Scholar 

  23. SAS Institute Inc., SAS OnlineDoc(TM), Version 7-1 Cary, SAS Institute Inc., NC (1999)

    Google Scholar 

  24. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Doug Rohde’s SVD C Library, version 1.34, http://tedlab.mit.edu/~dr/svdlibc/

  26. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1-5), 273–314 (1997)

    Article  Google Scholar 

  27. Yahoo! Research Webscope Movie Data Set. Version1.0, http://research.yahoo.com/

  28. Yu, K., Xu, X., Ester, M., Kriegel, H.P.: Feature weighting and instance selection for collaborative filtering: An information-theoretic approach*. Knowledge and Information Systems 5(2), 201–224 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baltrunas, L., Ricci, F. (2009). Item Weighting Techniques for Collaborative Filtering. In: Berendt, B., et al. Knowledge Discovery Enhanced with Semantic and Social Information. Studies in Computational Intelligence, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01891-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01891-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01890-9

  • Online ISBN: 978-3-642-01891-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics