Skip to main content

KAM Theorem of Symplectic Algorithms

  • Chapter
  • 3107 Accesses

Abstract

Numerical results have shown the overwhelming superiority of symplectic algorithms over the conventional non-symplectic systems, especially in simulating the global and structural dynamic behavior of the Hamiltonian systems. In the class of Hamiltonian systems, the most important and better-understood systems are completely integrable ones. Completely integrable systems exhibit regular dynamic behavior which corresponds to periodic and quasi-periodic motions in the phase spaces. In this chapter, we study problems as to whether and to what extent symplectic algorithms can simulate qualitatively and approximate quantitatively the periodic and quasi-periodic phase curves of integrable Hamiltonian systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. V. I. Arnold and A. Avez: Ergodic Problems of Classical Mechanics. Addison-Wesley and Benjamin Cummings, New York, (1989).

    MATH  Google Scholar 

  2. V.I. Arnold: Proof of A. N. kolmogorov’s theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian,. Russian Math. Surveys, 18(5):9–36, (1963).

    Article  Google Scholar 

  3. V. I. Arnold: Mathematical Methods of Classical Mechanics. Springer-Verlag, GTM 60, Berlin, Heidelberg, Second edition, (1989).

    Book  Google Scholar 

  4. K. Burrage and J.C. Butcher: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal., 16:46–57, (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. W. J. Beyn: On invariant closed curves for one-step methods. Numer. Math., 51:103–122, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Benettin and A. Giorgilli: On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys., 74:1117–1143, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. C. Buther: A stability property of implicity Runge-Kutta methods. BIT, 15(3):358–361, (1975).

    Article  Google Scholar 

  8. F. Castella and G. Dujardin: Propagation of gevrey regularity over long times for the fully discrete Lie-Trotter splitting scheme applied to the linear Schrödinger equation. ESIAM: Mathmatical Modelling and Numericalo Analysis, 43(4):651–676, (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Chartier, E. Faou, and A. Murua: An algebraic approach to invariant preserving integrators; the case of quadratic and Hamiltonian invariants. Numer. Math., 103(4):575–590, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Chierchia and G. Gallavotti: Smooth prime integralsfor quasi-integrable Hamiltonian systems. IL Nuovo Cimento, 67, 277–295, (1982).

    Article  MathSciNet  Google Scholar 

  11. P.J. Channell and C. Scovel: Symplectic integration of Hamiltonian systems. Nonlinearity, 3:231–259, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. G. Cheng and Y. S. Sun: Existence of KAM tori in degenerate Hamiltonian systems. J. Differential Equations, 114(1):288–335, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Dahlquist: A special stability problem for linear multistep methods. BIT, 3(1):27–43, (1963).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Dahlquist: Error analysis for a class of methods for stiff nonlinear initial value problems. In G.A. Watson, editor, Lecture notes in Mathematics, Vol. 506, Numerical Analysis, Dundee, pages 60–74. Springer, Berlin, (1975).

    Google Scholar 

  15. G. Dahlquist: G-stability is equivalent to A-stability. BIT, 18:384–401, (1978).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Dujardin and E. Faou: Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential. Numer. Math., 108(2):223–262, (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. L. Ehle: On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. Technical Report, Research Rep. No. CSRR 2010, University of Waterloo Dept. of Applied Analysis and Computer Science, (1969).

    Google Scholar 

  18. K. Feng: The Hamiltonian Way for Computing Hamiltonian Dynamics. In R. Spigler, editor, Applied and industrial Mathmatics, pages 17–35. Kluwer, The Netherlands, (1991).

    Google Scholar 

  19. K. Feng and M. Q. Qin: Symplectic Algorithms for Hamiltonian Systems. Zhejiang Science and Technology Publishing House,Hangzhou, in Chinese, First edition, (2003).

    Google Scholar 

  20. B. M. Garay: On structural stability of ordinary differential equations with respect to discretization methods. Numer. Math., 72:449–479, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Hairer: Backward analysis of numerical integrators and symplectic methods. Annals of Numer. Math., 1:107–132, (1994).

    MathSciNet  MATH  Google Scholar 

  22. E. Hairer and Ch. Lubich: The life-span of backward error analysis for numerical integrators. Numer. Math., 76:441–462, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Hairer, Ch. Lubich, and G. Wanner: Geometric Numerical Integration. Number 31 in Springer Series in Computational Mathematics. Springer-Verlag, Berlin, (2002).

    Book  MATH  Google Scholar 

  24. E. Hairer, S. P. Nørsett, and G. Wanner: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer-Verlag, Berlin, Second revised edition, (1993).

    MATH  Google Scholar 

  25. W. H. Hundsdorfer and M. N. Spijker: A note on B-stability of Runge-Kutta methods. Numer. Math., 36:319–331, (1981).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. R. Humphries and A. M. Stuart: Runge-Kutta methods for dissipative and gradient dynamical systems. SIAM J. Numer. Anal., 31(5):1452–1485, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. N. Kolmogorov: On conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR,, 98:527–530, (1954).

    MathSciNet  MATH  Google Scholar 

  28. V. F. Lazutkin: On Moser’s theorem on invariant curves. In Voprsoy raspr. seism. voln. vyp. Nauka Leningrad, 14:105–120, (1974).

    Google Scholar 

  29. M. C. Li: Structural stability for Euler method. SIAM J. Math. Anal., 30(4):747–755, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Leimkuhler and S. Reich: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge, First edition, (2005).

    Book  Google Scholar 

  31. J. Mather: Destruction of invariant circles. Ergod. Theory & Dynam. Sys, 8:199–214, (1988).

    Article  MathSciNet  Google Scholar 

  32. J. Moser: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gottingen, II. Math.-Phys., pages 1–20, (1962).

    Google Scholar 

  33. A. I. Neishtadt: Estimates in the Kolmogorov theorem on conservation of conditionally periodic motions. J. Appl. Math. Mech., 45(6):766–772, (1982).

    Article  MathSciNet  Google Scholar 

  34. J. Pöschel: Integrability of Hamiltonian systems on Cantor sets. Comm. Pure and Appl. Math., 35:653–695, (1982).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Rüssmann: On the existence of invariant curves of twist mappings of an anulus. In J. Palis, editor, Geometric Dynamics, Lecture Notes in Math. 1007, pages 677–718. Springer-Verlag, Berlin, (1981).

    Chapter  Google Scholar 

  36. H. Rüssmann: On twist Hamiltonian. In in Colloque Internationa: Mécanique céleste et systèmes hamiltoniens. Marseille, (1990).

    Google Scholar 

  37. A.M. Stuart and A.R. Humphries: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge, Second edition, (1996).

    MATH  Google Scholar 

  38. Z. J. Shang: On the KAM theorem of symplectic algorithms for Hamiltonian systems,. Ph.D. thesis (in Chinese), Computing Center, Academia Sinica, (1991).

    Google Scholar 

  39. Z. Shang: KAM theorem of symplectic algorithms for Hamiltonian systems. Numer. Math., 83:477–496, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. J. Shang: A note on the KAM theorem for symplectic mappings. J. Dynam. Differential eqns., 12(2):357–383, (2000).

    Article  MATH  Google Scholar 

  41. Z. J. Shang: Resonant and diophantine step sizes in computing invariant tori of Hamiltonian systems. Nonlinearity, 13:299–308, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  42. J. M. Sanz-Serna and M. P. Calvo: Numerical Hamiltonian Problems. AMMC 7. Chapman & Hall, London, (1994).

    MATH  Google Scholar 

  43. D. Stoffer: On the qualitative behavior of symplectic integrator. II: Integrable systems. J. of Math. Anal. and Applic., 217:501–520, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Stoffer: On the qualitative behaviour of symplectic integrators. III: Perturbed integrable systems. J. of Math. Anal. and Appl., 217:521–545, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  45. N. V. Svanidze: Small perturbations of an integrable dynamical system with an integral invariant. In Proceedings of the Steklov Institute of Mathematics, Issue 2, pages 127–151, (1981).

    Google Scholar 

  46. O. B. Widlund: A note on unconditionally stable linear multistep methods. BIT, 7(1):65–70, (1976).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, K., Qin, M. (2010). KAM Theorem of Symplectic Algorithms. In: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01777-3_14

Download citation

Publish with us

Policies and ethics