Skip to main content

Piezoresponse Force Microscopy of Functional Ceramics

  • Chapter

Abstract

Piezoresponse force microscopy (PFM) was customer-built based on the commercial atomic force microscope and used to characterize ferroelectric domains of functional materials. The PFM imaging contrast mechanism, domain configuration and their evolution behavior under the inhomogeneous tip fields in ferroelectric thin film, lead-free piezoelectric ceramics and relaxor-type single crystals are presented in details in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abplanalp M, Eng L M, Gunter P (1998) Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl Phys A 66(S1):s231–s234

    Article  Google Scholar 

  • Abplanalp M, Fousek J, Günter P (2001) Higher order ferroic switching induced by scanning force microscopy. Phys Rev Lett 86:5799

    Article  Google Scholar 

  • Abplanalp M, Günter P (1998) Imaging of ferroelectric domains with sub micrometer resolution by scanning force microscopy. Proc of 11th IEEE-ISAF, Montreux, 98CH36245:423

    Google Scholar 

  • Agronin A, Molotskii M, Rosenwaks Y, et al (2006) Dynamics of ferroelectric domain growth in the field of atomic force microscope. J. Appl. Phys. 99(10):102–104

    Article  Google Scholar 

  • Ahn C H, Tybell T, Antognazza L, et al (1997) Local, nonvolatile electronic writing of ppitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276(5315):1100–1103

    Article  Google Scholar 

  • Alexe M, Harnagea C, Erfurth W, et al (2000) 100 nm lateral size ferroelectric memory cells fabricated by electron-beam direct writing. Appl Phys A 70(3):247–251

    Article  Google Scholar 

  • Binnig G, Quate C F (1986) Atomic Force Microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  • Binnig G, Rohrer H, Gerber Ch (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180

    Article  Google Scholar 

  • Birk H, Glatz-Reichenbach J, Li J, et al (1991) The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy. J Vac Sci Tech B9(2):1162–1165

    Article  Google Scholar 

  • Chai F K (1997) Domain switching and spatial dependence of permittivity in ferroelectric thin films. J Appl Phys 82(5):2505–2516

    Article  Google Scholar 

  • Chu M W, Szafraniak I, Scholz R, et al (2004) Impact of misfit dislocation on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature material 3:87

    Article  Google Scholar 

  • Chu R Q, Zhang L N, Xu Z J, et al (2004) Phys Stat Sol 201: R45–R48

    Article  Google Scholar 

  • Colla E L, Taylor D V Tagantsev A K, et al (1998) Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes. Appl Phys Lett 72(19):2748–2750

    Article  Google Scholar 

  • Dunn S, Shaw C P, Huang Z, et al (2002) Ultrahigh resolution of lead zirconate titanate 30/70 domains as imaged by piezoforce microscopy. Nanotechnology 13:456–459

    Article  Google Scholar 

  • Franke K, Besold J, Haessler W, et al (1992) Modification and detection of domains on ferroelectric PZT films by scanning force microscopy. Surf Sci Lett 302(1–2): L283–L288

    Google Scholar 

  • Fu H, Cohen R E (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403(20):281–283

    Google Scholar 

  • Gopalan V, Mitchell T E (1998) Wall velocities, switching times, and the stabilization mechanism of 180° domains in congruent LiTaO3 crystals. J Appl Phys 83(2):941–954

    Article  Google Scholar 

  • Gruverman A and Tokumoto H (2001) On the imaging mechanism of ferroelectric domains in scanning force microscopy. Nano Letters 1(2):93–95

    Article  Google Scholar 

  • Gruverman A, Auciello O, Tokumoto H (1998) Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Ann Rev Mater Sci 28:101–123

    Article  Google Scholar 

  • Güthner P, Dransfeld K (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl Phys Lett 61(9):1137–1139

    Article  Google Scholar 

  • Harnagea C (2001) Ph.D thesis, Martin Luther University, Germany

    Google Scholar 

  • Hidaka T, Maruyama T, Saitoh M et al (1996) Formation and observation of 50 nm polarized domains in PbZr1−xTixO3 thin film using scanning probe microscope. Appl Phys Lett 68:2358–2360

    Article  Google Scholar 

  • Hong S, Setter N (2002) Evidence for forward domain growth being rate-limiting step in polarization switching in 〈111〉-oriented-Pb(Zr0.45Ti0.55)O3 thin-film capacitors. Appl Phys Lett 81(18):3437–3439

    Article  Google Scholar 

  • Hong S, Shin H, Woo J (2002) Effect of cantilever-sample interaction on piezoelectric force microscopy. Appl Phys Lett 80(8):1453–1455

    Article  Google Scholar 

  • Hong S, Woo J, Shin H, et al (2001) Principle of ferroelectric domain imaging using atomic force microscope. J Appl Phys 89(92):1377–1386

    Article  Google Scholar 

  • Ivanchik I I (1993) Spontaneous polarization screening in a single domain ferroelectric. Ferroelectrics 145:149–161

    Article  Google Scholar 

  • Kalinin S V, Bonnell D (2002) Contrast mechanism maps for piezoresponse force microscopy. J Mater Res 17(55):936–939

    Article  Google Scholar 

  • Kholkin A L, Shvartsman V V, Yu A, et al (2003) Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy. Appl Phys Lett 82(13):2127–2129

    Article  Google Scholar 

  • Likodimos V, et al (2000) Dynamical studies of the ferroelectric domain structure in triglycine sulfate by voltage-modulated scanning force microscopy. J Appl Phys 87(1):443–451

    Article  Google Scholar 

  • Martin Y, Abraham D W, Wickramasinghe H K (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett 52(13):1103–1105

    Article  Google Scholar 

  • Martin Y, Wickramasinghe H K (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457

    Article  Google Scholar 

  • Martin Y, Williams C C, Wickramasinghe H K (1987) Atomic force microscope—force mapping and profiling on a sub 100Å scale. J Appl Phys 61(10):4723–4729

    Article  Google Scholar 

  • Mate C M, McClelland G M, Erlandsson R, et al (1987) Atomicscale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59(17):1942–1945

    Article  Google Scholar 

  • Molotskii M (2003) Generation of ferroelectric domains in atomic force microscope. J Appl Phys 93(10):6234–6237

    Article  Google Scholar 

  • Noguchi Y, Miyayama M (2001) Large remanent polarization of vanadium-doped Bi4Ti3O12. Appl Phys Lett 78(913):1903–1905

    Article  Google Scholar 

  • Nonnemacher M, O’Boyle M P, Wickramasinghe H K (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923

    Article  Google Scholar 

  • Paruch P, Giamarchi T, Tybell T, et al (2006) Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films. J Appl Phys 100(5):051608

    Article  Google Scholar 

  • Pertsev N A, Zembilgotor A G, Tagantsev A K (1998) Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Phys Rev Lett 80(9):1988–1991

    Article  Google Scholar 

  • Rodriguez B J, R. Nemanich J, Kingon A, et al (2005) Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Appl Phys Lett 86(1):012906

    Article  Google Scholar 

  • Sarid D, Elings J (1991) Review of scanning force microscopy. J. Vac Sci Technol B 9(2):431–437

    Article  Google Scholar 

  • Service R F (1997) Shape-changing crystals get shiftier. Science 275(5308):1877–1878

    Article  Google Scholar 

  • Synge E H (1928) A suggested method for extending the resolution into the ultra-microscopic region. Phil Mag 6:356–362

    Google Scholar 

  • Tagantsev A K (1996) Mechanisms of polarization switching in ferroelectric thin films. Ferroelectrics 184:79–88

    Article  Google Scholar 

  • Tybell T, Paruch P, Giamarchi T, et al (2002) Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys Rev Lett 89(9):097601

    Article  Google Scholar 

  • Xu Z, Kim M C, Li J F, et al (1996) Observation of a sequence of domain-like states with increasing disorder in ferroelectrics. Phil Mag A 74(1):395–406

    Article  Google Scholar 

  • Yin J, Cao W (2001) Polarization reversal study using ultrasound. Appl Phys Lett 79(27):4556–4558

    Article  Google Scholar 

  • Yu H F, Zeng H R, Zhang L N, et al (2005) In-situ characterization of local domain structure and elasticity in Nb-doped Bi4Ti3O12 piezoelectric ceramics by scanning probe microscopy. Material Letters 59(12):1538–5341

    Article  Google Scholar 

  • Yu H F, Zeng, H R, Chu R Q, et al (2004) Distribution and formation mechanism of the domain structure in PMN-PT single crystals. J Phys D: Appl Phys 37:2914–2917

    Article  Google Scholar 

  • Yu H F, Zeng, H R, Wang H X, et al (2005) Domain structure in tetragonal PMN-PT single crystals studied by piezoresponse force microscopy. Solid State Communications 133:311–314

    Article  Google Scholar 

  • Zavala G, Fendler J H, McKinstry S T (1997) Characterization of ferroelectric lead zirconate titanate films by scanning force microscopy. J Appl Phys 81(11):7480–7491

    Article  Google Scholar 

  • Zeng H R, Li G R, Yin Q R, et al (2003) Nanoscale domain switching mechanism in Pb(Zr,Ti)O3 thin film. Appl Phys A 76(1):401–403

    Article  Google Scholar 

  • Zeng H R, Li G R, Yin Q R, et al (2003) Local characterization of compositionally graded Pb(Zr,Ti)O3 thin films by scanning force microscope. Mater Sci and Eng B 99(1–3):234–237

    Article  Google Scholar 

  • Zeng H R, Shimamura K, Villora E A G, et al (2007) Domain growth kinetics and wall strain behavior in BaMgF4 ferroelectric crystal by piezoresponse force microscopy. J Apple phys 101: 074109

    Article  Google Scholar 

  • Zeng H R, Shimamura K, Villora E A G, et al (2007) Piezoresponse imaging and local characterization of ferroelectric domains in Pb(Zn1/3Nb2/3)O3-7%PbTiO3 single crystals. Physics Status Solidi: Rapid Research Letter 1(2):R62–R64

    Article  Google Scholar 

  • Zeng H R, Yin Q R, Li G R (2003) Abnormal piezoresponse of relaxor ferroelectric PMN-PT single crystal. Science Bulletin (in Chinese) 48(10):1023–1026

    Google Scholar 

  • Zeng H R, Yu H F, Li G R, et al (2005) Local elasticity imaging of domain structures in ferroelectrics. Solid State Communication 133(8):521–525

    Article  Google Scholar 

  • Zeng Huarong (2003) Scanning force microscopy of nanoscale ferroelectric domains. Ph.D. Thesies, Shanghai Institute of Ceramics, Chinese Academy of Sciences

    Google Scholar 

  • Zeng H R, Yu H F, Chu R Q, et al (2004) Domain orientation imaging of PMN-PT single crystals by vertical and lateral piezoresponse force microscopy. J Cryst Growth 267(1–2):194–198

    Article  Google Scholar 

  • Zeng H R, Yu H F, Chu R Q, et al (2005) Spatial inhomogeneity of ferroelectric domain structure in PMN-PT single crystals. Material Letter 59(2–3):238–240

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Metallurgical Industry Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Piezoresponse Force Microscopy of Functional Ceramics. In: Microstructure, Property and Processing of Functional Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01694-3_4

Download citation

Publish with us

Policies and ethics