Skip to main content

Finite Automata

  • Chapter
  • First Online:
Book cover Handbook of Weighted Automata

Abstract

In this chapter we develop the theory of finite automata starting from ideas based on linear algebra over semirings. Many results in the theory of automata and languages depend only on a few equational axioms. For example, Conway has shown that Kleene’s fundamental theorem equating the recognizable languages with the regular ones follows from a few simple identities defining Conway semirings. Such semirings are equipped with a star operation subject to the sum star identity and product star identity.

We define finite automata over power series semirings and over Conway semirings, and prove theorems of the Kleene–Schützenberger type. Moreover, we introduce finite linear systems and show the coincidence of the set of components of the solutions of such finite linear systems with the set of behaviors of finite automata.

Then we generalize the Büchi theory on languages over infinite words. We define the algebraic structures needed for this generalization: semiring–semimodule pairs and quemirings. Then we define finite automata over quemirings and prove theorems of the Kleene–Büchi type. Moreover, we consider linear systems over quemirings as a generalization of regular grammars with finite and infinite derivations and show the coincidence of the set of components of the solutions of such linear systems with the set of behaviors of finite automata over quemirings.

The first author was partially supported by grant no. MTM2007-63422 from the Ministry of Education and Science of Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berstel and C. Reutenauer. Les séries rationelles et leurs langages. Masson, Paris, 1984. English translation: Rational Series and Their Languages, volume 12 of Monographs in Theoretical Computer Science. An EATCS Series. Springer, 1988.

    Google Scholar 

  2. S.L. Bloom and Z. Ésik. Iteration Theories, Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, 1993.

    MATH  Google Scholar 

  3. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int. Congr. Logic, Methodology and Philosophy of Science, 1960. pages 1–11. Stanford University Press, Stanford, 1962.

    Google Scholar 

  4. J.H. Conway. Regular Algebra and Finite Machines. Chapman & Hall, London, 1971.

    MATH  Google Scholar 

  5. M. Droste and W. Kuich. Semirings and formal power series. In this Handbook, chapter 1. Springer, Berlin, 2009

    Google Scholar 

  6. S. Eilenberg. Automata, Languages and Machines, volume C. Draft of Sects. I–III, 1978.

    Google Scholar 

  7. C. Elgot. Matricial theories. Journal of Algebra, 42:391–422, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Ésik. Fixed point theory. In this Handbook, chapter 2. Springer, Berlin, 2009

    Google Scholar 

  9. Z. Ésik and W. Kuich. Inductive *-semirings. Theoretical Computer Science, 324:3–33, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  10. Z. Ésik and W. Kuich. Equational axioms for a theory of automata. In C. Martin-Vide, V. Mitrana, and G. Paun, editors, Formal Languages and Applications, volume 148 of Studies in Fuzziness and Soft Computing, pages 183–196. Springer, Berlin, 2004.

    Google Scholar 

  11. Z. Ésik and W. Kuich. A semiring–semimodule generalization of ω-regular languages II. Journal of Automata, Languages and Combinatorics, 10:243–264, 2005.

    MATH  MathSciNet  Google Scholar 

  12. Z. Ésik and W. Kuich. Modern Automata Theory. www.dmg.tuwien.ac.at/kuich, 2007

  13. Z. Ésik and W. Kuich. On iteration semiring–semimodule pairs. Semigroup Forum, 75:129–159, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. U. Hebisch. The Kleene theorem in countably complete semirings. Bayreuther Mathematische Schriften, 31:55–66, 1990.

    MATH  MathSciNet  Google Scholar 

  15. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison–Wesley, Reading, 1979.

    MATH  Google Scholar 

  16. St.C. Kleene. Representation of events in nerve nets and finite automata. In C.E. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, 1956.

    Google Scholar 

  17. W. Kuich. The Kleene and the Parikh theorem in complete semirings. In ICALP87, volume 267 of Lecture Notes in Computer Science, pages 212–225. Springer, Berlin, 1987.

    Google Scholar 

  18. W. Kuich. Semirings and formal power series: Their relevance to formal languages and automata theory. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, Chapter 9, pages 609–677. Springer, Berlin, 1997.

    Google Scholar 

  19. W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, 1986.

    MATH  Google Scholar 

  20. D. Perrin and J.-É. Pin, Infinite Words, Elsevier, 2004

    Google Scholar 

  21. I. Petre and A. Salomaa. Algebraic systems and pushdown automata. In this Handbook, chapter 7. Springer, Berlin, 2009

    Google Scholar 

  22. A. Salomaa. Formal Languages. Academic Press, San Diego, 1973.

    MATH  Google Scholar 

  23. A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin, 1978.

    MATH  Google Scholar 

  24. M.P. Schützenberger. On the definition of a family of automata. Information and Control, 4:245–270, 1961.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ésik, Z., Kuich, W. (2009). Finite Automata. In: Droste, M., Kuich, W., Vogler, H. (eds) Handbook of Weighted Automata. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01492-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01492-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01491-8

  • Online ISBN: 978-3-642-01492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics