Skip to main content

Thermodynamic Paradoxes

  • Chapter
  • First Online:

The entropy of mixing ideal gases was treated already by Gibbs. The result is known as the Gibbs’ paradox. Several scientists were engaged with this paradox, among them Rayleigh, Lorentz, Einstein, and von Neumann 1[1,2].

The paradox states that the two gases can be as similar as possible, but not completely similar to exhibit an entropy of mixing. Gibbs’ paradox was tried to be explained in several ways. For example, it was stated that nature changes the properties in jumps, in other words, in quanta [3,p.163].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rayleigh, J.: The work can be obtained at mixing different gases. In: Scientific Papers, vol. 1, pp. 242–249. Cambridge University Press, Cambridge (1899). Reprint at Dover Publications, New York, 1964

    Google Scholar 

  2. Tatarin, V., Borodiouk, O.: Entropy calculation of reversible mixing of ideal gases shows absence of Gibbs paradox. Entropy 1(2), 25–36 (1999). [electronic] www.mdpi.org/entropy/

    Google Scholar 

  3. Schaefer, C.: Theorie der Wärme, Molekular-kinetische Theorie der Materie, Einführung in die theoretische Physik, vol. 2, 3rd edn. De Gruyter, Berlin (1958)

    Google Scholar 

  4. Kemp, H.R.: Gibbs’ paradox for entropy of mixing. J. Chem. Educ. 62(1), 47–49 (1985)

    CAS  Google Scholar 

  5. McDonald, J.J.: Gibbs’ paradox: Two views on the correction term (lte). J. Chem. Educ. 63(8), 735 (1986)

    Google Scholar 

  6. Kemp, H.R.: Gibbs’ paradox: Two views on the correction term (lte). J. Chem. Educ. 63(8), 736 (1986)

    Article  CAS  Google Scholar 

  7. Ben-Naim, A.: On the so-called Gibbs paradox, and on the real paradox. Entropy 9, 132–136 (2007). [electronic] http://www.mdpi.org/entropy/papers/e9030132.pdf

    Google Scholar 

  8. Jaynes, E.T.: The Gibbs paradox. In: C.R. Smith, G.J. Erickson, P.O. Neudorfer (eds.) Maximum Entropy and Bayesian Methods, Fundamental Theories of Physics, vol. 50, pp. 1–22. Kluwer Academic Publishers, Dordrecht, Holland (1992)

    Google Scholar 

  9. Eldridge, J.A.: Experimental test of Maxwell’s distribution law. Phys. Rev. 30(6), 931–935 (1927)

    Article  Google Scholar 

  10. Stern, O.: Eine direkte Messung der thermischen Molekulargeschwindigkeit. Z. Phys. A: Hadrons Nucl. 2(1), 49–56 (1920)

    CAS  Google Scholar 

  11. Zartman, I.F.: A direct measurement of molecular velocities. Phys. Rev. 37(4), 383–391 (1931)

    Article  CAS  Google Scholar 

  12. Baranyai, A.: The kinetics of mixing and the fluctuation theorem in ideal mixtures of two component model fluids. J. Chem. Phys. 119(4), 2144–2146 (2003)

    Article  CAS  Google Scholar 

  13. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 2401–2404 (1993)

    Article  CAS  Google Scholar 

  14. Wang, G.M., Sevick, E.M., Mittag, E., Searles, D.J., Evans, D.J.: Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89(8905), 601–601 (2002)

    Google Scholar 

  15. Bub, J.: Maxwell’s demon and the thermodynamics of computation. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 32(4), 569–579 (2001)

    Article  Google Scholar 

  16. Badger, W.L., McCabe, W.L.: Elements of Chemical Engineering, Chemical Engineering Series, 2nd edn. McGraw-Hill Book Company, Inc., New York, London (1936)

    Google Scholar 

  17. Landsberg, P.T.: Fragmentations, mergings and order: Aspects of entropy. Phys. Stat. Mech. Appl. 305(1–2), 32–40 (2002)

    Article  Google Scholar 

  18. Piekarczyk, W.: Crystal growth of CVD diamond and some of its peculiarities. Cryst. Res. Technol. 34(5–6), 553–563 (1999)

    Article  CAS  Google Scholar 

  19. Wald, R.M.: The thermodynamics of black holes. Living Rev. Relat. 4(6) (2001). [electronic] http://www.livingreviews.org/lrr-2001-6

  20. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973). URL http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1103858973?abstract=

    Google Scholar 

  21. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975). URL http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1103899181?abstract=

  22. Gramatke, H.P.: Perpetuum mobile. [electronic] http://www.hp-gramatke.net/perpetuum/index.htm (2003)

  23. Michal, S.: Das Perpetuum mobile gestern und heute, 2nd edn. VDI-Verlag, Duüsseldorf (1981)

    Google Scholar 

  24. Antonijevic, B. Gravitational alternator. WO Patent 2 005 012 724, assigned to Antonijevic Borisa (Yu), Feb. 10 (2005)

    Google Scholar 

  25. Ritscher, H. Einrichtung zur Erzeugung von Elektrischer Energie. DE Patent 8 510 493U, Jul. 11 1987

    Google Scholar 

  26. Smeretchanski, M. Mechanical energy generator uses gravity and buoyancy forces acting on variable volume elements controlled by gas cylinders. FR Patent 2 830 575, assigned to Smeretchanski Mikhail (Fr), Apr. 11 2003

    Google Scholar 

  27. Lynden-Bell, D.: Negative specific heat in astronomy, physics and chemistry. Phys. Stat. Mech. Appl. 263(1–4), 293–304 (1999)

    Article  Google Scholar 

  28. Thirring, W.: Systems with negative specific heat. Z. Phys. A: Hadrons Nucl. 235(4), 339–352 (1970)

    Google Scholar 

  29. D’Agostino, M., Bougault, R., Gulminelli, F., Bruno, M., Cannata, F., Chomaz, P., Gramegna, F., Iori, I., Le Neindre, N., Margagliotti, G.V.: On the reliability of negative heat capacity measurements. Nucl. Phys. A 699(3–4), 795–818 (2002)

    Article  Google Scholar 

  30. Allen, J.F., Jones, H.: New phenomena connected with heat flow in He II. Nature 141, 243–244 (1938)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Karl Fink .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, J.K. (2009). Thermodynamic Paradoxes. In: Physical Chemistry in Depth. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01014-9_10

Download citation

Publish with us

Policies and ethics