Skip to main content

Time-Dependent Flow Properties of Transient Hydrogels with Temporal Network Junctions

  • Conference paper
  • 2590 Accesses

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 136))

Abstract

The nonlinear rheological behavior under startup shear flows in aqueous solutions of telechelic hydrophobically ethoxylated urethane carrying branched alkyl end-chains, 2-decyl-tetradecyl, (referred to as C24-HEUR) was studied by strain-controlled rheomery. Unusual stress upturn (known as strain hardening), followed by the stress overshoot, was observed for 3 wt% aqueous solution above a critical shear rate. The phenomenon is explained by our recent transient network theory in terms of nonlinear chain stretching occurring during the stress build-up. Upon addition of glycerol, the relaxation time was shortened, while the equilibrium modulus increased with the concentration of glycerol. The stress upturn disappeared above a certain value of the glycerol concentration, strongly suggesting that glycerol affects the dynamics of the transient network through the interaction with the micellar junctions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jenkins RD (1990) Ph.D. dissertation, Lehigh University

    Google Scholar 

  2. Lundberg DJ, Glass JE, and Eley RR (1991) Rheol. Acta 7, 1255

    Google Scholar 

  3. Annable T, Buscall R, Ettelaie R, and Whittlestone D (1993) J. Rheol.,37, 695

    Google Scholar 

  4. Annable T, Buscall R, Ettelaie R, Shepherd P, and Whittlestone D (1994) Langmuir, 10, 1060

    Article  CAS  Google Scholar 

  5. Tanaka F and Edward SF (1991) Macromolecules, 25, 147

    Google Scholar 

  6. Tanaka F and Edwards SF (1992) J. Non-Newtonean Fluid Mech., 43, 247

    Google Scholar 

  7. Tanaka F and Edwards SF (1992) J. Non-Newtonean Fluid Mech., 43, 273

    Google Scholar 

  8. Tanaka F and Edwards SF (1992) J. Non-Newtonean Fluid Mech., 43, 289

    Google Scholar 

  9. Tanaka F and Koga T (2006) Macromolecules, 39, 5913

    Article  CAS  Google Scholar 

  10. Patent WO 02051939

    Google Scholar 

  11. Yoshida K, Nakamura A, Nakajima Y, Fukuhara T, Inoue H, and Kaneda I (2007) IFSCC magazine, 10, 2

    Google Scholar 

  12. Barmar M, Barikani M, and Kaffashi (2005) Colloids and Surfaces A, 253, 77

    Article  CAS  Google Scholar 

  13. Kaffashi B, Barmar M, and Eyvani J (2005) Colloids and Surfaces A, 254, 125

    Article  CAS  Google Scholar 

  14. Tripathi A, Tam KC, and McKinley GH (2006) Macromolecules, 39, 1981

    Article  CAS  Google Scholar 

  15. Onogi S, Masuda T, and Matsumoto T (1970) Trans. Soc. Rheol., 14, 275

    Google Scholar 

  16. Matsumoto T, Tamamoto O, Onogi S (1980) J. Rheol., 24 (4), 379

    Article  CAS  Google Scholar 

  17. Penfold J, Staples E, Tucker I, and Cummins P (1997) J. Colloid Inter. Sci., 185, 424

    Article  CAS  Google Scholar 

  18. Alexandridis P and Yang L (2000) Macromolecules, 33, 5587

    Google Scholar 

  19. Koga T, Tanaka F, and Kaneda I (2009) Progr Colloid Polym Sci., 136, Chapter 6

    Google Scholar 

  20. Winnik FM, Ringsdorf H, Venzmer J (1990) Macromolecules 23, 2415

    Article  CAS  Google Scholar 

  21. Winnik FM, Ottaviani M F, Bossmann, Garcia-Garibay M, and Turro NJ (1992) Macromolecules 25, 6007

    Article  CAS  Google Scholar 

  22. Kaneda I and Vincent B (2004) J. Colloid Interface Sci., 274, 49

    Google Scholar 

  23. Tanaka F, Koga T, and Winnik FM (2008) Physical Review Letters, 101, 028302

    Article  Google Scholar 

  24. Nishinari K (2004) J. Texture Studies, 35, 113

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by a Grant-in-Aid for Scientific Research (B)19350057 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isamu Kaneda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaneda, I., Koga, T., Tanaka, F. (2009). Time-Dependent Flow Properties of Transient Hydrogels with Temporal Network Junctions. In: Tokita, M., Nishinari, K. (eds) Gels: Structures, Properties, and Functions. Progress in Colloid and Polymer Science, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00865-8_5

Download citation

Publish with us

Policies and ethics