Skip to main content

Revisit to Swelling Kinetics of Gels

  • Conference paper
  • 2619 Accesses

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 136))

Abstract

The swelling and shrinking dynamics of the gels with a wide variety of aspect ratios is experimentally investigated. As the aspect ratio becomes sufficiently larger or smaller than unity, the swelling kinetics asymptotically approaches that of infinitely long cylinders or infinitely large disks, respectively. The characteristic times of the infinitely long cylinders and infinitely large disks are compared to the predictions of the classical Li-Tanaka model and its modified models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tanaka T, Fillmore DJ (1979) J Chem Phys 70:1214

    Article  CAS  Google Scholar 

  2. Peters A, Candau S (1988) Macromolecules 21:2278

    Article  CAS  Google Scholar 

  3. Li Y, Tanaka Y (1990) J Chem Phys 92:1365

    Article  CAS  Google Scholar 

  4. Takigawa T, Uchida K, Takahashi K, Masuda T (1999) J Chem Phys 111:2295

    Article  CAS  Google Scholar 

  5. Onuki A (1993) Adv Polym Sci 109:97

    Google Scholar 

  6. Wang C, Li Y, Hu Z (1997) Macromolecules 30:4727

    Article  CAS  Google Scholar 

  7. Yamaue T, Doi M (2005) J Chem Phys 122:084703

    Article  Google Scholar 

  8. Doi M (2004) Nihon Reoroji Gakkaishi 32:11

    Article  Google Scholar 

  9. Matsuo ES, Tanaka T (1992) Nature 358:482

    Article  CAS  Google Scholar 

  10. Nosaka S, Urayama K, Takigawa T (2005) Polym J 37:694

    Article  CAS  Google Scholar 

  11. Takigawa T, Morino Y, Urayama K, Masuda T (1996) Polym J 28:1012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Area “Soft Matter Physics” (No. 19031014) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This research was also supported in part by the Global COE Program “International Center for Integrated Research and Advanced Education in Materials Science” (No. B-09) of MEXT of Japan, administrated by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Urayama .

Editor information

Editors and Affiliations

Appendix

We summarize the expressions for τ 1,sphere, τ 1,cylinder and τ 1,disk in each model. The expression of τ 1,sphere is common to all models, and it is given by

$$\tau _{{\rm 1}} = \frac{{a_\infty ^2 }}{{D\nu _{{\rm 1}} ^2 }}$$
(\rm A1)
where a corresponds to the equilibrium diameter and υ 1,sphere satisfies the equation (A2).
$$4R\left[ {1 - \nu _{{{\rm 1,sphere}}} \cot (\nu _{{{\rm 1,sphere}}} )} \right] - \nu _{1,{{\rm sphere}}}^2 = 0$$
(\rm A2)

The quantities υ 1,cylinder (YD) and υ 1,disk (YD) for the Yamaue-Doi[7] model are the solutions of the equations (A3) and (A4), respectively.

$$\nu _{{\rm 1,cylinder}}^{{\rm (YD)}} J^\prime_1 (\nu _{{\rm 1,cylinder}}^{{\rm (YD)}}) + \left(1 - \frac{8R}{3}\right)J_1(\nu _{{\rm 1,cylinder}}^{{\rm (YD)}}) = 0$$
(\rm A3)
$$\nu _{{{\rm 1,disk}}}^{{{\rm (YD)}}} \cos (\nu _{{{\rm 1,disk}}}^{{{\rm (YD)}}} ) - \frac{4}{3}R{{\rm sin}}(\nu _{{{\rm 1,disk}}}^{{{\rm (YD)}}} ) = 0$$
(\rm A4)
where J 1(x) is the Bessel function. We have derived the equation (A4) on the basis of their governing equations because the solution for large disk gels was not given in the original paper [7]. The values of τ 1,cylinder (YD) and τ 1,disk (YD) are obtained from (A1) assuming a as the equilibrium diameter of cylinders and the equilibrium height of disks, respectively. The values of τ 1,cylinder (LT) and τ 1,disk (LT) for the Li-Tanaka [3] model are given by the following equations:
$$\tau _{1,{\rm cylinder}}^{{\rm (LT)}} = \frac{3}{2}\frac{a_\infty ^2}{D\nu _{{\rm 1,cylinder}}}^{{\rm (LT)} 2}$$
(\rm A5)
$$\tau _{1,{{\rm disk}}}^{{{\rm (LT)}}} = \frac{{3a_\infty ^2 }}{{D\nu _{{{\rm 1,disk}}}^{{{\rm (LT)}}2} }}$$
(\rm A6)
where υ 1,cylinder (LT) and υ 1,disk (LT) are the solutions of the equations (A7) and (A8), respectively.
$$\nu _{{\rm 1,cylinder}}^{{\rm (LT)}} J^\prime_1 (\nu_{{\rm 1,cylinder}}^{LT}) + 2(1-2R)J_1 (\nu_{1,cylinder} ^{(Lt)})=0$$
(\rm A7)
$$4R - 2 - \nu _{{{\rm 1,disk}}}^{{{\rm (LT)}}} \cot (\nu _{{{\rm 1,disk}}}^{{{\rm (LT)}}} ) = 0$$
(\rm A8)

The expressions of τ 1,cylinder (WLH) and τ 1,disk (WLH) for the Wang-Li-Hu (WLH) model [6] are given by

$$\tau _{{\rm 1,cylinder}}^{{\rm (WLH)}} = \frac{2 + B_1 }{2}\frac{a^2}{D\nu _{{\rm 1,cylinder}}^{{\rm (LT)2}}}$$
(\rm A9)
$$\tau _{{\rm 1,disk}}^{{\rm (WLH)}} = \left( {1 + 2B_1^\prime} \right)\frac{a^2 }{D\nu _{{\rm 1,disk}}^{{\rm (LT) 2}}}$$
(\rm A10)
where B 1 and B 1′ are the quantities related to R as
$$B_1 = \frac{{2\left( {3 - 4R} \right)}}{{\alpha _1^2 - \left( {4R - 1} \right)\left( {3 - 4R} \right)}}$$
(\rm A11)
$$B_1^{\prime} = \frac{4}{{\alpha _1 }}\frac{{\left( {{{\rm sin}}\alpha _1 - \alpha _1 \cos \alpha _1 } \right)}}{{\left[ {2\alpha _1 - {{\rm sin}}(2\alpha _1 )} \right]}}{{\rm sin}}\alpha _{{\rm 1}} $$
(\rm A12)

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urayama, K., Murata, N., Nosaka, S., Kojima, M., Takigawa, T. (2009). Revisit to Swelling Kinetics of Gels. In: Tokita, M., Nishinari, K. (eds) Gels: Structures, Properties, and Functions. Progress in Colloid and Polymer Science, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00865-8_15

Download citation

Publish with us

Policies and ethics