Characterizing Pure High-Order Entanglements in Lexical Semantic Spaces via Information Geometry

Purchase on Springer.com

$29.95 / €24.95 / £19.95*

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An emerging topic in Quantuam Interaction is the use of lexical semantic spaces, as Hilbert spaces, to capture the meaning of words. There has been some initial evidence that the phenomenon of quantum entanglement exists in a semantic space and can potentially play a crucial role in determining the embeded semantics. In this paper, we propose to consider pure high-order entanglements that cannot be reduced to the compositional effect of lower-order ones, as an indicator of high-level semantic entities. To characterize the intrinsic order of entanglements and distinguish pure high-order entanglements from lower-order ones, we develop a set of methods in the framework of Information Geometry. Based on the developed methods, we propose an expanded vector space model that involves context-sensitive high-order information and aims at characterizing high-level retrieval contexts. Some initial ideas on applying the proposed methods in query expansion and text classification are also presented.