Skip to main content

Active Vision for Goal-Oriented Humanoid Robot Walking

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5436))

Abstract

Complex visual tasks may be tackled with remarkably simple neural architectures generated by a co-evolutionary process of active vision and feature selection. This hypothesis has recently been tested in several robotic applications such as shape discrimination, car driving, indoor/outdoor navigation of a wheeled robot. Here we describe an experiment where this hypothesis is further examined in goal-oriented humanoid bipedal walking task. Hoap-2 humanoid robot equipped with a primitive vision system on its head is evolved while freely interacting with its environment. Unlike wheeled robots, bipedal walking robots are exposed to largely perturbed visual input caused by their own walking dynamics. We show that evolved robots are capable of coping with the dynamics and of accomplishing the task by means of active, efficient camera control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloimonos, J., Weiss, I., Bandopadhay, A.: Active vision. International Journal of Computer Vision 1(4), 333–356 (1987)

    Article  Google Scholar 

  2. Bajcsy, R.: Active perception. Proceedings of the IEEE 76, 966–1005 (1988)

    Article  Google Scholar 

  3. Ballard, D.H.: Animate vision. Artificial Intelligence 48(1), 57–86 (1991)

    Article  Google Scholar 

  4. Hancock, P.J.B., Baddeley, R.J., Smith, L.S.: The principal components of natural images. Network 3, 61–70 (1992)

    Article  Google Scholar 

  5. Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biological Cybernetics 90(3), 218–228 (2004)

    Article  PubMed  Google Scholar 

  6. Kagami, S., Nishiwaki, K., Kuffner, J., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online 3D vision, motion planning and bipedal locomotion control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2557–2562 (2002)

    Google Scholar 

  7. Seara, J.F., Schmidt, G.: Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robotics and Autonomous Systems 48(4), 231–248 (2004)

    Article  Google Scholar 

  8. Sabe, K., Fukuchi, M., Gutmann, J.S., Ohashi, T., Kawamoto, K., Yoshigahara, T.: Obstacle avoidance and path planning for humanoid robots using stereo vision. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 592–597 (2004)

    Google Scholar 

  9. Suzuki, M., Floreano, D., Di Paolo, E.A.: The contribution of active body movement to visual development in evolutionary robots. Neural Networks 18(5/6), 656–665 (2005)

    Article  PubMed  Google Scholar 

  10. Floreano, D., Suzuki, M., Mattiussi, C.: Active vision and receptive field development in evolutionary robots. Evolutionary Computation 13(4), 527–544 (2005)

    Article  PubMed  Google Scholar 

  11. Suzuki, M., Floreano, D.: Evolutionary active vision toward three dimensional landmark-navigation. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS, vol. 4095, pp. 263–273. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  13. Hinton, G.E., Sejnowski, T.J.: Unsupervised Learning. The MIT Press, Cambridge (1999)

    Google Scholar 

  14. Takanishi, A., Takeya, T., Karaki, H., Kumeta, M., Kato, I.: A control method for dynamic walking under unknown external force. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tsuchiura, Japan, pp. 795–801 (1990)

    Google Scholar 

  15. Reil, T., Husbands, P.: Evolution of central pattern generators for bipedal walking in a real-time physics environment. IEEE Transactions on Evolutionary Computation 6(2), 159–168 (2002)

    Article  Google Scholar 

  16. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  PubMed  Google Scholar 

  17. Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits and networks. IEEE Transactions on Evolutionary Computation 11(5), 596–607 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suzuki, M., Gritti, T., Floreano, D. (2009). Active Vision for Goal-Oriented Humanoid Robot Walking. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds) Creating Brain-Like Intelligence. Lecture Notes in Computer Science(), vol 5436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00616-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00616-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00615-9

  • Online ISBN: 978-3-642-00616-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics