Skip to main content

Recent Results on Local Projection Stabilization for Convection-Diffusion and Flow Problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 69))

Abstract

A survey of stabilization methods based on local projection is given. The class of steady problems considered covers scalar convection-diffusion equations, the Stokes problem and the linearized Navier-Stokes equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Tabata. A finite element approximation corresponding to the upwind differencing. Memoirs of Numerical Mathematics, 1:47–63, 1977.

    MathSciNet  Google Scholar 

  2. A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32:199–259, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  3. U. Nävert. A finite element method for convection-diffusion problems. PhD thesis, Chalmers University of Technology, Göteborg, 1982.

    Google Scholar 

  4. T.J.R. Hughes, L.P. Franca, and M. Balestra. Errata: “A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations”. Comput. Methods Appl. Mech. Eng., 62(1):111, 1987.

    Article  MathSciNet  Google Scholar 

  5. L. Tobiska and R. Verfürth. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal., 33:107–127, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Braack and E. Burman. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal., 43:2544–2566, 2006.

    MATH  MathSciNet  Google Scholar 

  7. G. Matthies, P. Skrzypacz, and L. Tobiska. A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. M2AN, 41(4):713–742, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Rapin, G. Lube, and J. Löwe. Applying local projection stabilization to inf-sup stable elements. In Karl Kunisch, Güther Of, and Olaf Steinbach, editors, Numerical mathematics and advanced applications. Proceedings of the 7th European Conference (ENUMATH 2007) held in Graz September 10–14, 2007, pages 521–528, Springer, Berlin, 2008.

    Google Scholar 

  9. M. Braack and G. Lube. Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. (to appear), 2008.

    Google Scholar 

  10. P. Knobloch and L. Tobiska. On the stability of finite element discretizations of convection-diffusion-reaction equations. Preprint 08–11, Faculty of Mathematics, University Magdeburg, 2008.

    Google Scholar 

  11. H.-G. Roos, M. Stynes, and L. Tobiska. Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems. Number 24 in SCM. Springer, Berlin, 2008.

    MATH  Google Scholar 

  12. R. Becker and M. Braack. A two-level stabilization scheme for the Navier-Stokes equations. In Numerical mathematics and advanced applications, pages 123–130. Springer, Berlin, 2004.

    Google Scholar 

  13. G. Matthies, P. Skrzypacz, and L. Tobiska. Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. ETNA 32(2008), 90–105

    Google Scholar 

  14. J.-L. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal., 33:1293–1316, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  15. W.J. Layton. A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comput., 133:147–157, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng., 190:1579–1599, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng., 191:4295–4321, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Tobiska. On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations. Comput. Methods Appl. Mech. Eng., 2008. doi:10.1016/j:cma.2008.10.016.

    Google Scholar 

  19. L. Tobiska. Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Comput. Methods Appl. Mech. Engrg., 196:538–550, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  20. T.J.R. Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green's function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal., 45(2):539–557, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Franz and G. Matthies. Local projection stabilization on S-type meshes for convection-diffusion problems with characteristic layers. Preprint MATH-NM-07-2008, TU Dresden, 2008.

    Google Scholar 

  22. G. Matthies. Local projection stabilization for higher order discretizations of convection-difusion problems on Shishkin meshes. Adv. Comput. Math., 2008. doi: 10.1007/s10444-008-9070-y.

    Google Scholar 

  23. G. Matthies. Local projection methods on layer adapted meshes for higher order discretizations of convection-difusion problems. Preprint July 1, 2008, Ruhr University Bochum, 2008.

    Google Scholar 

  24. V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations. Springer, Berlin, 1986.

    MATH  Google Scholar 

  25. T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih. Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity pressure elements. Comput. Methods Appl. Mech. Eng., 95:221–242, 1992.

    Article  MATH  Google Scholar 

  26. R. Codina and J. Blasco. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Methods Appl. Mech. Engrg., 143:373–391, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Becker and M. Braack. A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo, 38(4):173–199, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Ganesan, G. Matthies, and L. Tobiska. Local projection stabilization of equal order interpolation applied to the Stokes problem. Math. Comp., 77(264):2039–2060, 2008.

    Article  MathSciNet  Google Scholar 

  29. L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54:483–493, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of the stokes problem. In W. Hackbusch, editor, Efficient solution of elliptic systems, Notes on Numerical Fluid Mechanics, pages 11–19. Vieweg, 1984.

    Google Scholar 

  31. D.N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equation. CALCOLO. 21:337–344, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  32. W. Bai. The quadrilateral ‘Mini’ finite element for the Stokes equation. Comput. Methods Appl. Mech. Engrg.:41–47, 1997.

    Google Scholar 

  33. L.P. Franca, S.P. Oliviera, and M. Sarkis. Continuous Q1/Q1 Stokes element stabilized with non-conforming null average velocity functions. Math. Models Meth. Appl. Sci. (M3AS), 17:439–459, 2007.

    Article  MATH  Google Scholar 

  34. P. Knobloch and L. Tobiska. Stabilization methods of bubble type for the Q1/Q1-element applied to the incompressible Navier-Stokes equations. Math. Model. Numer. Anal. M2AN, 34(1):85–107, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Mons and G. Roge. L'élément q 1-bulle/q 1. Math. Model. Numer. Anal. M2AN, 26:507–521, 1992.

    MATH  MathSciNet  Google Scholar 

  36. R.E. Bank and B.D. Welfert. A comparision between the mini-element and the Petrov-Galerkin formulation for the generalized Stokes problem. Comput. Methods Appl. Mech. Engrg., 83(1):61–68, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  37. L.P. Franca and S.P. Oliviera. Pressure bubbles stabilization features in the Stokes problem. Comput. Methods Appl. Mech. Engrg., 192:1929–1937, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  38. G. Lube, G. Rapin, and J. Löwe. Local projection stabilization of finite element methods for incompressible flows. In Karl Kunisch, Günther Of, and Olaf Steinbach, editors, Numerical mathematics and advanced applications. Proceedings of the 7th European Conference (ENUMATH 2007) held in Graz September 10–14, 2007, pages 481–488, Springer, Berlin, 2008.

    Google Scholar 

  39. G. Matthies and L. Tobiska. Local projection type stabilisation applied to inf-sup stable discretisations of the Oseen problem. Preprint 07–47, Fakultät für Mathematik, University Magdeburg, 2007.

    Google Scholar 

  40. M. Braack. A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. Math. Model. Numer. Anal. M2AN, 42:903–924, 2008.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Tobiska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tobiska, L. (2009). Recent Results on Local Projection Stabilization for Convection-Diffusion and Flow Problems. In: Hegarty, A., Kopteva, N., O'Riordan, E., Stynes, M. (eds) BAIL 2008 - Boundary and Interior Layers. Lecture Notes in Computational Science and Engineering, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00605-0_4

Download citation

Publish with us

Policies and ethics