Skip to main content

Control of Flexible Rotors

  • Chapter
  • First Online:
Magnetic Bearings

The goal of this chapter is to discuss the problems that rotor flexibility and hardware limitations introduce in the design of AMB controllers and to present some solution strategies for these problems. Rotor flexibility means that the rotor can have relatively high gain at higher frequencies and this introduces complications in designing controllers with physically realizable bandwidths. Further, non-collocation of actuators and sensors along with finite bandwidth of actuation, sensing, and control mechanisms can mean that a passivity type of approach to controller design is not feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ackermann. Sampled Data Control. Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  2. Markus Ahrens and Ladislav Kucera. Cross feedback control of a magnetic bearing system: Controller design considering gyroscopic effects. In Proceedings of the Third International Symposium on Magnetic Bearings, pages 177–191, Alexandria, Virginia, USA, 1996.

    Google Scholar 

  3. E. Anton and H. Ulbrich. Active control of vibrations in the case of asymmetrical high-speed rotors by using magnetic bearings. ASME, Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 107:410–415, 1985.

    Google Scholar 

  4. G.J. Balas, J.C. Doyle, K. Glover, A.K. Packard, and R. Smith. μ Analysis and Synthesis Toolbox User’s Guide. The MathWorks, Natick, MA, 1995.

    Google Scholar 

  5. M. J. Balas. Active control of flexible systems. Journal of Optimization Theory and Applications, 25(3):415–436, July 1978.

    Article  MATH  MathSciNet  Google Scholar 

  6. John S. Bay. Fundamentals of Linear State Space Systems. McGraw-Hill, 1999.

    Google Scholar 

  7. H. Bleuler, C. Gähler, R. Herzog, R. Larsonneur, T. Mizuno, R. Siegwart, and S. Woo. Application of digital signal processors for industrial magnetic bearings. IEEE Transactions on Control Systems Technology, 2(4):280–289, Dec. 1994.

    Article  Google Scholar 

  8. H. Bleuler, D. Vischer, G. Schweitzer, A. Traxler, and D. Zlatnik. New concepts for cost-effective magnetic bearing control. Automatica, 30(5):871–876, 1994.

    Article  Google Scholar 

  9. H. Bleuler and D. Vischer. Magnetic bearing systems with minimal hardware requirement. In ROMAG ’91: Magnetic Bearings and Dry Gas Seals International Conference and Exhibition, March 1991.

    Google Scholar 

  10. Hannes Bleuler. Decentralized Control of Magnetic Rotor Bearing Systems. PhD thesis, Federal Institute of Technology (ETH), Zürich, 1984.

    Google Scholar 

  11. Hendrick W. Bode. Network Analysis and Feedback Amplifier Design. D. Von Nostrand Company, Inc., 1945.

    Google Scholar 

  12. T. S. Brinsmead and G. C. Goodwin. Fundamental limits in sensitivity minimization: Multiple–input–multiple–output (MIMO) plants. IEEE Transactions on Automatic Control, 46(9):1486–1490, September 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. R. Burrows and M. N. Sahinkaya. Vibration control of multi-mode rotor-bearing systems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 386(1790):77–94, March 1983.

    Google Scholar 

  14. S. Carabelli, C. Delprete, and G. Genta. Rotor on active magnetic suspension, part I : Theoretical considerations. European Journal of Mechanical and Environmental Engineering, 43(3):123–128, 1998.

    Google Scholar 

  15. V. H. L. Cheng and C. A. Desoer. Limitations on the closed–loop transfer function due to right–half plane transmission zeros of the plant. IEEE Transactions on Automatic Control, 25(6):1218–1220, December 1980.

    Article  MATH  Google Scholar 

  16. Dara Childs Turbomachinery Rotordynamics. Hoboken, NJ: John Wiley and Sons,Inc.,1993.

    Google Scholar 

  17. Cloud, W.C. Foiles, G. Li, E.H. Maslen, and L.E. Barrett. Practical applications of singular value decomposition in rotordynamics. In Proceedings of 6 th international conference on rotor dynamics, pages 429–438, Sydney, Australia, Oct. 2002.

    Google Scholar 

  18. J. B. Cruz Jr. James S. Freudenberg, and Douglas P. Looze. A relationship between sensitivity and stability of multivariable feedback systems. IEEE Transactions on Automatic Control, 26(1):66–74, 1981.

    Article  MATH  Google Scholar 

  19. J. B. Cruz Jr. and W. R. Perkins. A new approach to the sensitivity problem in multivariable feedback system design. IEEE Transactions on Automatic Control, 9:216–223, 1964.

    Article  Google Scholar 

  20. Jose B. Cruz Jr., editor. System Senstivity Analysis. Dowden, Hutchinson & Ross, Inc., 1973.

    Google Scholar 

  21. R. Lane Dailey. Lecture notes for the workshop on H∞ and μ methods for robust control. In American Control Conference, May 1990.

    Google Scholar 

  22. J. P. Den Hartog. Mechanical Vibrations. McGraw Hill, New York, 1947.

    Google Scholar 

  23. J.C. Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, AC-23(4):756–757, August 1978.

    Article  MathSciNet  Google Scholar 

  24. J.C. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings, 129, Part D(6):242–250, 1982.

    Google Scholar 

  25. J.C. Doyle, K. Glover, K. Khargonekar, and B. Francis. State–space solutions to standard h2 and h∞ control problems. IEEE Trans. Auto. Control, AC-34(8):831–847, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  26. John C. Doyle and Gunter Stein. Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Trans. Auto. Control, 26(1):4–16, 1981.

    Article  MATH  Google Scholar 

  27. Roger Fittro and Carl Knospe. The μ approach to control of active magnetic bearings. ASME J. Engineering for Gas Turbines and Power, 124(3), July 2002.

    Google Scholar 

  28. Bruce A. Francis and George Zames. On H∞-Optimal sensitivity theory for SISO feedback systems. IEEE Trans. Auto. Control, 29(1):9–16, Jan. 1984.

    Article  MATH  Google Scholar 

  29. R. Gasch, R. Nordmann, and H. Pfützner. Rotordynamik. Berlin, Heidelberg: Springer-Verlag, 2001.

    Google Scholar 

  30. G. Genta, C. Delprete, and S. Carabelli. Active magnetic bearing control loop modeling for a finite element rotordynamics code. In Proc. of the 3rd Intl. Symp. on Magnetic Suspension Technology, pages 319–333, May 1994.

    Google Scholar 

  31. Giancarlo Genta. Dynamics of Rotating Systems. Springer, 2005.

    Google Scholar 

  32. 1995.

    Google Scholar 

  33. H. Habermann and M. Brunet. The active magnetic bearing enables optimum damping of flexible rotor. In Proceedings of the 29th International Gas Turbine Conference and Exhibition, Amsterdam, Netherlands, June 1984.

    Google Scholar 

  34. H. Habermann and G. Liard. An active magnetic bearing system. Tribology International, pages 85–89, April 1980.

    Google Scholar 

  35. L. Hawkins, B. T. Murphy, and J. Kajs. Analysis and testing of a magnetic bearing energy storage flywheel with gain-scheduled, MIMO control. In Proceedings of the 45th ASME International Gas Turbine and Aeroengine Technical Congress, Exposition, and Users Symposium, Munich, Germany, May 2000.

    Google Scholar 

  36. H. Herzog, Ph. Bühler, C. Gähler, and R. Larsonneur. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings. IEEE Trans. Control Systems Technology, 4(5):580–586, Sep. 1996.

    Article  Google Scholar 

  37. Sung-Kyung Hong and R. Langari. Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances. IEEE Transactions on Control Systems Technology, 8(2):366–371, March 2000.

    Article  Google Scholar 

  38. R. R. Humphris, R. D. Kelm, D. W. Lewis, and P. E. Allaire. Effect of control algorithms on magnetic journal bearings. Trans. ASME Journal of Engineering for Gas Turbines and Power, 108:624–632, October 1986.

    Article  Google Scholar 

  39. ISO TC108/SC2 Working Group 7. Active magnetic bearings - evaluation of stability margin. ISO-14839-3, September 2006.

    Google Scholar 

  40. Marty E. Johnson, Luiz P. Nascimento, Mary Kasarda, and Chris R. Fuller. The effect of actuator and sensor placement on the active control of rotor unbalance. J. Vibration and Acoustics – Trans. ASME, 125(3):365–373, July 2003.

    Article  Google Scholar 

  41. Y. Kanemitsu, M. Ohsawa, and E. Marui. Comparison of control laws for magnetic levitation. In Proceedings of the Fourth International Symposium on Magnetic Bearings, 1994.

    Google Scholar 

  42. C. R. Knospe, R. W. Hope, S. J. Fedigan, and R. D. Williams. Experiments in the control of unbalance response using magnetic bearings. Mechatronics, 1995.

    Google Scholar 

  43. C. R. Knospe, R. W. Hope, S. M. Tamer, and S. J. Fedigan. Robustness of adaptive unbalance control of rotors with magnetic bearings. Journal of Vibration and Control, 2(1):33–52, 1996.

    Article  Google Scholar 

  44. C. R. Knospe, S. M. Tamer, and S. J. Fedigan. Robustness of adaptive rotor vibration control to structured uncertainty. ASME Journal of Dynamic Systems, Measurement, and Control, 119(2):243–250, 1997.

    Article  MATH  Google Scholar 

  45. C. R. Knospe and C. Yang. Gain-scheduled control of a magnetic bearing with low bias flux. In Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, pages 418–423, December 1997.

    Google Scholar 

  46. V. S. Lefante. Noncollocation in magnetic bearings for flexible rotors. Master’s thesis, University of Virginia, 1992.

    Google Scholar 

  47. Guoxin Li, Eric Maslen, and Paul Allaire. A note on ISO AMB-rotor system stability margin. In Proceedings of the Tenth International Symposium on Magnetic Bearings, Martigny, Switzerland, August 2006.

    Google Scholar 

  48. D. P. Looze and J. S. Freudenberg. Limitations of feedback properties imposed by open–loop right half plane poles. IEEE Transactions on Automatic Control, 36(6), June 1991.

    Google Scholar 

  49. Florian Lösch. Identification and Automated Controller Design for Active Magnetic Bearing Systems. PhD thesis, ETH Zürich, 2002.

    Google Scholar 

  50. E. H. Maslen and J. R. Bielk. A stability model for flexible rotors with magnetic bearings. ASME Journal of Dynamic Systems, Measurement, and Control, 114(1):172–175, March 1992.

    Article  Google Scholar 

  51. The Mathworks, Inc. μ-Analysis and Synthesis Toolbox User’s Guide, Version 3, 1998.

    Google Scholar 

  52. F. Matsumura and T. Yoshimoto. System modeling and control design of a horizontal–shaft magnetic bearing system. IEEE Transactions on Magnetics, 22(3):196–203, May 1986.

    Article  Google Scholar 

  53. Abdelfatah M. Mohamed, Fumio Matsumura, Toru Namerikawa, and Jun-Ho Lee. Modeling and robust control of self-sensing magnetic bearings with unbalance compensation. IEEE Conference on Control Applications - Proceedings, pages 586 – 594, 1997.

    Google Scholar 

  54. K. Nonami, H. E. Weidong, and H. Nishimura. Robust control of magnetic levitation systems by means of H∞ control/μ–synthesis. JSME International Journal, 37(3):513–520, 1994.

    Google Scholar 

  55. Y. Okada, T. Nagata, J.Tani, and H. B. Zhang. Vibration analysis and active control of flexible–shell– structured rotor supported by magnetic bearings. JSME International Journal Series C, 37(3):488–493, 1994.

    Google Scholar 

  56. A. Packard and J.C. Doyle. The complex structured singular value. Automatica, 29:71–109, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  57. N. K. Rutland, P. S. Keogh, and C. R. Burrows. Comparison of controller designs for attenuation of vibration in a rotor-bearing system under synchronous and transient conditions. In Proceedings of the Fourth International Symposium on Magnetic Bearings, 1994.

    Google Scholar 

  58. J. R. Salm. Active electromagnetic suspension of an elastic rotor : Modelling, control, and experimental results. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 110:493–500, October 1988.

    Google Scholar 

  59. Jerzy Sawicki and Eric Maslen. AMB controller design for a machining spindle using μ-synthesis. In Proceedings of the Tenth International Symposium on Magnetic Bearings, Martigny, Switzerland, August 2006.

    Google Scholar 

  60. J. Schmied and J. C. Pradetto. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings. In Proceedings of the Third International Symposium on Magnetic Suspension Technology, pages 557–572, May 1994.

    Google Scholar 

  61. U. Schonhoff, J. Luo, G. Li, E. Hilton, R. Nordmann, and P. Allaire. Implementation results of μ-synthesis control for an energy storage flywheel test rig. In Proceedings of the Seventh International Symposium on Magnetic Bearings, Zürich, Switzerland, 2000.

    Google Scholar 

  62. G. Schweitzer, H. Bleuler, and A. Traxler. Active Magnetic Bearings. Hochschulverlag AG an der ETH Zurich, 1994.

    Google Scholar 

  63. M. B. Scudiere, R. A. Willems, and G. T. Gillies. Digital controller for a magnetic suspension system. Rev. Sci. Instrum., 57(8):1616–1626, August 1986.

    Article  Google Scholar 

  64. J. D. Setiawan, R. Mukherjee, and E. H. Maslen. Synchronous sensor runout and unbalance compensation in active magnetic bearings using bias current excitation. ASME Journal of Dynamic Systems, Measurement, and Control, 124:14–24, March 2002.

    Article  Google Scholar 

  65. B. Shafai, S. Beale, P. Larocca, and E. Cusson. Magnetic bearing control systems and adaptive forced balancing. IEEE Control Systems Magazine, 14(2):4–13, April 1994.

    Article  Google Scholar 

  66. T. N. Shiau, G. J. Sheu, and C. D. Yang. Vibration and control of a flexible rotor in magnetic bearings using hybrid method and H∞ control theory. ASME J. Engineering for Gas Turbines and Power, 119(1):178–185, January 1997.

    Article  Google Scholar 

  67. G. Schweitzer. Control concepts for active magnetic bearings. In Proc, of the First International Symposium on Magnetic Suspension Technology, pages 401–422, May 1992.

    Google Scholar 

  68. S. Sivrioglu and K. Nonami. LMI approach to gain scheduled H∞ control beyond PID control for gyroscopic rotor-magnetic bearing system. In Proceedings of the 35th IEEE Conference on Decision and Control, pages 3694–3699, Dec. 1996.

    Google Scholar 

  69. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. John Wiley & Sons Ltd, West Sussex, England, 1996.

    Google Scholar 

  70. V. A. Spector and H. Flashner. Modeling and design implications of nocollocated control in flexible systems. Journal of Dynamic Systems, Measurement, and Control, 112:186–193, June 1990.

    Article  Google Scholar 

  71. M. Spirig, J. Schmied, P. Jenckel, and U. Kanne. Three practical examples of magnetic bearing control design using a modern tool. ASME Journal of Engineering for Gas Turbines and Power, pages 1025–1031, October 2002.

    Google Scholar 

  72. S. Srinivasan, E. Maslen, and L. Barrett. Optimization of bearing locations for rotor systems with magnetic bearings. ASME Journal of Engineering for Gas Turbines and Power, 119:464–468, April 1997.

    Article  Google Scholar 

  73. L. Scott Stephens. Design and Control of Active Magnetic Bearings for a High Speed Machining Spindle. PhD thesis, University of Virginia, 1995.

    Google Scholar 

  74. A. F. Storace, D. Sood, J. P. Lyons, and M. A. Preston. Integration of magnetic bearings in the design of advanced gas turbine engines. In NASA Second International Symposium on Magnetic Suspension Technology, Seattle, 1989.

    Google Scholar 

  75. H. Q. Tian and K. Nonami. Robust-control of flexible rotor magnetic bearing systems using discrete-time sliding mode control. JSME International Journal Series C, 37(3):504–512, 1994.

    Google Scholar 

  76. D. L. Trumper, S. M. Olson, and P. K. Subrahmanyan. Linearizing control of magnetic suspension systems. IEEE Transactions on Control Systems Technology, 5(4):427–438, July 1997.

    Article  Google Scholar 

  77. S. R. Weller. Structural Issues in Control Design for Linear Multivariable Systems. PhD thesis, University of Newcastle, Australia, 1993.

    Google Scholar 

  78. F. Wu. A generalized LPV system analysis and control synthesis framework International Journal of Control, 74(7): 745–759, May 2001.

    Article  MATH  MathSciNet  Google Scholar 

  79. K. Youcef-Toumi. Modeling, design, and control integration: a necessary step in mechatronics. IEEE/ASME Trans. Mechatronics, 1(1):29–38, March 1996.

    Article  Google Scholar 

  80. K. Youcef-Toumi and S. Reddy. Dynamic analysis and control of high speed and high precision active magnetic bearings. Journal of Dynamical Systems, Measurement, and Control, 114:623–633, December 1992.

    Article  Google Scholar 

  81. George Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26(2):301–320, April 1981.

    Article  Google Scholar 

  82. George Zames and Bruce A. Francis. Feedback, minimax sensitivity, and optimal robustness. IEEE Transactions on Automatic Control, 28(5):585–601, May 1983.

    Article  MATH  Google Scholar 

  83. K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, Inc., 1996.

    Google Scholar 

  84. Shiyu Zhou. Active balancing and vibration control of rotating machinery: A survey. The Shock and Vibration Digest, 33(5):361–371, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Maslen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maslen, E. (2009). Control of Flexible Rotors. In: Maslen, E., Schweitzer, G. (eds) Magnetic Bearings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00497-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00497-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00496-4

  • Online ISBN: 978-3-642-00497-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics