Skip to main content

miRNA Transgene Technology

  • Chapter
  • First Online:
  • 1048 Accesses

Abstract

The miRNA-targeting or miRNA-gain-of-function technologies introduced in Chaps. 3–5 can only create transient forced expression of miRNAs in in vitro conditions, which may be inadequate when the research or therapy requires long-lasting, stable overexpression of miRNAs for in vivo evaluation of function consequent to miRNA-targeting. Transgenic mice models have been used to tackle the problem. There are in general two different approaches for establishing miRNA transgene animals. One is the conventional transgene approach that has been widely used for protein-coding genes. This approach was first applied to miRNA research in 2006 by Costinean et al. [Proc Natl Acad Sci USA 103:7024–7029, 2006] and Peng et al. [Proc Natl Acad Sci USA 103:2252–2256, 2006], then in 2007 by Lu et al. [Dev Biol 310:442–453, 2007], and recently by us as well Zhang et al. [Science, 2009]. The second is a creative approach utilizing artificial intronic miRNAs generated by inserting a transposon into the intron of a protein-coding gene, which was originally developed by Ying's laboratory in 2003 [Lin SL, Chang D, Wu DY, Ying SY, Biochem Biophys Res Commun 310:754–760, 2003; Lin SL, Chang SJ, Ying SY, Methods Mol Biol 342:321–334, 2006]. The miRNA-transgene technology belongs to the “miRNA-targeting” and “miRNA-gain-of-function” strategy and is primarily used for studying miRNA target genes, cellular function and pathological role in animal models. This strategy is largely based on the concept of ‘miRNA as a Regulator of a Cellular Function’ introduced in Sect. 2.1.2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chen H, Hoffmann A, Cool DR, Diz DI, Chappell MC, Chen A, Morris M (2006) Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 47:230–237.

    Article  PubMed  CAS  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318:271–274.

    Article  PubMed  CAS  Google Scholar 

  • Coumoul X, Li W, Wang RH, Deng C (2004) Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system. Nucleic Acids Res 32:e85.

    Article  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029.

    Article  PubMed  CAS  Google Scholar 

  • Everett CA, West JD (1996) The influence of ploidy on the distribution of cells in chimaeric mouse blastocysts. Zygote 4:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013.

    Article  PubMed  CAS  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Zhang P (2007) Transgenic RNA Interference in Mice. Physiology 22:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Kasim V, Miyagishi M, Taira K (2004) Control of siRNA expression using the Cre-loxP recombination system. Nucleic Acids Res 32:e66.

    Article  PubMed  Google Scholar 

  • Kasim V, Miyagishi M, Taira K (2003) Control of siRNA expression utilizing Cre-loxP recombination system. Nucleic Acids Res Suppl 3:255–256.

    PubMed  CAS  Google Scholar 

  • Kramer A (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65:367–409.

    Article  PubMed  CAS  Google Scholar 

  • Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 21:559–561.

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Chang D, Wu DY, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760.

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Chang SJ, Ying SY (2006) Transgene-like animal models using intronic microRNAs. Methods Mol Biol 342:321–334.

    PubMed  CAS  Google Scholar 

  • Lin SL, Kim H, Ying SY (2008) Intron-mediated RNA interference and microRNA (miRNA). Front Biosci 13:2216–2230.

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Ying SY (2006a) Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol 342:295–312.

    PubMed  CAS  Google Scholar 

  • Lin SL, Ying SY (2006b) Gene slicing using intronic microRNAs. In MicroRNA Protocols, ed by Ying SY, Humana Press. pp 305–320.

    Google Scholar 

  • Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of Jung epithelial progenitor cells. Dev Biol 310:442–453.

    Article  PubMed  CAS  Google Scholar 

  • Mougin A, Gottschalk A, Fabrizio P, Luhrmann R, Branlant C (2002) Direct probing of RNA structure and RNA–protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 Tri-snRNP particles. J Mol Biol 317:631–649.

    Article  PubMed  CAS  Google Scholar 

  • Peli J, Schmoll F, Laurincik J, Brem G, Schellander K (1996) Comparison of aggregation and injection techniques in producing chimeras with embryonic stem cells in mice. Theriogenology 45:833–842.

    Article  PubMed  CAS  Google Scholar 

  • Peng S, York JP, Zhang P (2006) A transgenic approach for RNA interference-based genetic screening in mice. Proc Natl Acad Sci USA 103:2252–2256.

    Article  PubMed  CAS  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406.

    Article  PubMed  CAS  Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469.

    Article  PubMed  CAS  Google Scholar 

  • Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608.

    Google Scholar 

  • Tiscornia G, Tergaonkar V, Galimi F, Verma IM (2004) CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci USA 101:7347–7351.

    Article  PubMed  CAS  Google Scholar 

  • Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 101:10380–10385.

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261.

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Ying SY, Chang DC, Lin SL (2008) The microRNA (miRNA): Overview of the RNA genes that modulate gene function. Mol Biotechnol 38:257–268.

    Article  PubMed  CAS  Google Scholar 

  • Ying SY, Lin SL (2004) Intron-derived microRNAs-fine tuning of gene functions. Gene 342:25–28.

    Article  PubMed  CAS  Google Scholar 

  • Ying SY, Lin SL (2006) Current perspectives in intronic micro RNAs (miRNAs). J Biomed Sci 13:5–15.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lu Y,Wang N, Lin H, Pan Z, Gao X, Zhang F, Zhang Y, Xiao J, Shan H, Luo X, Chen G, Qiao G, Wang Z, Yang B (2009) Control of experimental atrial fibrillation by microRNA-328. Science (in revision).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z. (2009). miRNA Transgene Technology. In: MicroRNA Interference Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00489-6_6

Download citation

Publish with us

Policies and ethics