Skip to main content

Sponge miR-Mask Technology

  • Chapter
  • First Online:
MicroRNA Interference Technologies
  • 1000 Accesses

Abstract

Sponge miR-Mask technology combines the principle of actions of miRNA Sponge and miR-Mask technologies. Like a miR-Mask but unlike a miRNA Sponge, a Sponge miR-Mask does not directly interact with a miRNA but is designed to bind to the binding site of a miRNA seed family in the 3′UTR of all target mRNAs; like a miRNA Sponge but unlike a miR-Mask, a Sponge miR-Mask binds by a partial complementary mechanism only with its seed site 8 nts base-pairing to its target genes. In this way, a Sponge miR-Mask is able to block access of all members of a miRNA seed family of interest to their binding sites or a particular miRNA to their multiple binding sites in a gene to target the actions of all members of that miRNA seed family, leading to derepression of the proteins from the miRNA seed family. This technology was established by my laboratory in 2008 (unpublished observations). The Sponge miR-Mask technology belongs to the “targeting-miRNA” and “miRNA-loss-of-function” strategy. The miRNA Sponge technology complies with the ‘miRNA Seed Family’ concept (see Sect. 2.1.4 for detail).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770.

    Article  PubMed  CAS  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318:271–274.

    Article  PubMed  CAS  Google Scholar 

  • Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9:R127.

    Article  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726.

    Article  PubMed  CAS  Google Scholar 

  • Garzon R, Pichiorri F, Palumbo T, luliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, Calin GA, Liu CG, Bloomfield CD, Andreeff M, Crocc CM (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103:5078–5083.

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM (2007) Soaking up small RNAs. Nat Methods 4:694–695.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B (in press) A single anti-microRNA antisense oligodeoxynucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res.

    Google Scholar 

  • Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T (2007) Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26:6099–6105.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen A, Robertson B, Dalby AB, Marshall WS, Karpilow J, Leake D, Khvorova A, Baskerville S (2007) Double-stranded regions are essential design components of potent inhibitors of RISC function. RNA 13:723–730.

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261.

    Article  PubMed  CAS  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181.

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, Zheng J, Xu J, Cheng JQ, Lin JY, Ma X (2009) Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst 25:13–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z. (2009). Sponge miR-Mask Technology. In: MicroRNA Interference Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00489-6_11

Download citation

Publish with us

Policies and ethics