Skip to main content

Hormonale Steuerung

  • Chapter
Book cover Tier- und Humanphysiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Auch wenn uns die Vorstellung fremd sein mag, trifft sie doch zu: Wir alle existieren als ein Staat von Zellen. Die Abermilliarden Einzelzellen sind freilich in ihrer Existenz voneinander abhängig und müssen miteinander kooperieren, um den Staat als Ganzes lebensfähig zu halten. Es gibt eine unüberschaubare Fülle von Möglichkeiten, wie Zellen miteinander kommunizieren können. Beispielsweise können sie auf ihrer Zelloberfläche Signalmoleküle exponieren, die von Nachbarzellen abgetastet und abgelesen werden können. Solche im Nahbereich wirksamen Kommunikationssysteme haben fundamentale Bedeutung in der Embryonalentwicklung. Sie bleiben zeitlebens bedeutsam bei der Kontrolle lokaler Prozesse wie z. B. Entzündungen und Immunreaktionen (s. Kap. 7, Immunologie). Wir betrachten in diesem Kapitel Systeme der Fernkommunikation, besonders die Kommunikation über Botenstoffe, die unter dem Begriff Hormon (engl.: hormone, von griech.: horman = antreiben, in Gang setzen;) bekannt geworden sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatuur

  • Ellison PT et al (2009) Endocrinology of social relationships. Harvard University Press, Cambridge

    Google Scholar 

  • Kleine B, Rossmanith WG (2007) Hormone und Hormonsystem. Springer, Berlin

    Google Scholar 

  • Smagghe G (2009) Ecdysone, structures and functions. Springer, Netherlands

    Book  Google Scholar 

  • Spindler KD (1997) Vergleichende Endokrinologie. Thieme, Stuttgart

    Google Scholar 

Artikel: Hypophyse, Hypophosenhormone, Opioide: Zentrales Hunger- Sättigungs-Zentrum

  • Balthazart J, Ball GF (2007) Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol 28(4): 161–178

    Article  PubMed  Google Scholar 

  • Bodnar RJ (2006) Endogenous opiates and behavior. Peptides 28(12): 2435–2513

    Article  CAS  Google Scholar 

  • Burdakov D et al (2005) Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360(1464): 2227–2235

    Article  PubMed  CAS  Google Scholar 

  • Dube MG et al (2007) Low abundance of NPY in the hypothalamus can produce hyperphagia and obesity. Peptides 28(2): 475–479

    Article  PubMed  CAS  Google Scholar 

  • Goffin V et al (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64: 47–67

    Article  PubMed  CAS  Google Scholar 

  • Goldstone AP (2006) The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog Brain Res 153: 57–73

    Article  PubMed  CAS  Google Scholar 

  • Grattan DR (2008) Prolactin: A pleiotropic neuroendocrine hormone. J Neuroendocrinol 20(6): 752–763

    Article  PubMed  CAS  Google Scholar 

  • Keen-Rhinehart E, Bartness TJ (2008) Leptin inhibits fooddeprivation-induced increases in food intake and food hoarding. Am J Physiol Regul Integr Comp Physiol 295(6): R1737–R1746

    PubMed  CAS  Google Scholar 

  • MacNeil DJ (2007) NPY Y1 and Y5 receptor selective antagonists äs anti-obesity drugs. Curr Top Med Chem 7(17): 1721–1733

    Article  PubMed  CAS  Google Scholar 

  • Malik S et al (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7(5): 400–409

    Article  PubMed  CAS  Google Scholar 

  • Meister B (2007) Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav 92(1-2): 263–271

    Article  PubMed  CAS  Google Scholar 

  • Peters A et al (2007) Causes of obesity: looking beyond the hypothalamus. Prog Neurobiol 81(2): 61–88

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Nagasaki H (2008) The melanin-concentrating hormone System and its physiological functions. In: Civelli O, Zhou QY (eds) Results Probl Cell Differ 46: 159–179

    Article  CAS  Google Scholar 

  • Schubert M, Brunet F et al (2008) Nuclear hormone receptor signaling in amphioxus. Dev Genes Evol 218(11): 651–665

    Article  PubMed  CAS  Google Scholar 

  • Segal-Lieberman G et al (2003) Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. PNAS 100(17): 10085–10090

    Article  PubMed  CAS  Google Scholar 

  • Seo YJ et al (2008) Characterization of the hypothalamic proopiomelanocortin gene and beta-endorphin expression in the hypothalamic arcuate nucleus of mice elicited by inflammatory pain. Neuroscience 152(4): 1054–1066

    Article  PubMed  CAS  Google Scholar 

Stoffwechsel, vegetative Funktionen, Hunger versus Appetit – periphere Hormone

  • Ahimaand RS, Lazar MA (2008) Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol 22: 1023–1031

    Article  CAS  Google Scholar 

  • Beglinger C, Degen L (2006) Gastrointestinal satiety Signals in humans – physiologic roles for GLP-1 and PYY. Physiol Behav 89(4): 460–464

    Article  PubMed  CAS  Google Scholar 

  • Biebermann et al (2006) A role for alpha-melanocyte stimulating hormone in human body weight regulation. Cell Metab 3: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Farooqi IS, O'Rahilly S (2008) Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Prac Endocrinol Metab 4(10): 569–577

    Article  CAS  Google Scholar 

  • Friedman MI et al (2005) Peripheral Signals in the control of feeding behavior. Chem Senses 30: i182–i183

    Article  PubMed  Google Scholar 

  • Leonard JL (2008) Non-genomic actions of thyroid hormone in brain development. Steroids 73(9-10): 1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Levin F et al (2006) Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab 91(9): 3296–3302

    Article  PubMed  CAS  Google Scholar 

  • Manzon LA (2002) The role of prolactin in fish osmoregulation. Gen Comp Endocrinol 125: 291–310

    Article  PubMed  CAS  Google Scholar 

  • Plum L et al (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2): 59–65

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD et al (2008) Role of insulin signaling in maintaining energy homeostasis. Endocr Prac 14(3): 373–380

    Google Scholar 

  • Taguchi A, White MF (2008) Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70: 191–212

    Article  PubMed  CAS  Google Scholar 

  • Tasker JG et al (2006) Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147(12): 5549–5556

    Article  PubMed  CAS  Google Scholar 

  • Williams GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20(6): 784–794

    Article  PubMed  CAS  Google Scholar 

  • Wynne K, Bloom SR (2006) The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat Clin Prac Endocrinol Metab 2(11): 612–620

    Article  CAS  Google Scholar 

  • Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62: 439–466

    Article  PubMed  CAS  Google Scholar 

Hormone und Immunsystem

  • Pallinger E, Csaba G (2008) A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells. Immunology 123(4): 584–589

    Article  PubMed  CAS  Google Scholar 

  • Webster MJI, Glaser R (2008) Stress hormones and immune function. Cell Immunol 252(1-2): 16–26

    Article  CAS  Google Scholar 

Somatische Geschlechtsentwicklung, Sexualhormone

  • Blecher SR, Erickson RP (2007) Genetics of sexual development: a new paradigm. Am J Med Genet A 143A(24): 3054–3068

    Article  PubMed  CAS  Google Scholar 

  • Ohtani-Kaneko R (2006) Mechanisms underlying estrogeninduced sexual differentiation in the hypothalamus. Histol Histopathol 21(3): 317–324

    PubMed  CAS  Google Scholar 

  • Simpson ER (2002) Aromatization of androgens in woman: current concepts and findings. Fertil Steril 77(Suppl 4): 6–10

    Article  Google Scholar 

  • Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3-5): 225–230

    Article  PubMed  CAS  Google Scholar 

  • Simpson ER et al (2002) Aromatase – a brief overview. Annu Rev Physiol 64: 93–127

    Article  PubMed  CAS  Google Scholar 

  • Stocco C (2008). Aromatase expression in the ovary: hormonal and molecular regulation. Steroids 73(5): 473–487

    Article  PubMed  CAS  Google Scholar 

Geschlecht, Gehirn und Verhalten

  • Bakker J, Baum MJ (2008) Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol 29(1): 1–16

    Article  PubMed  CAS  Google Scholar 

  • Bartels A, Zeki S (2004) The neural correlates of maternal and romantic love. NeuroImage 21(3): 1155–1166

    Article  PubMed  Google Scholar 

  • Bocklandt S, Vilain E (2007) Sex differences in brain and behavior: hormones versus genes. Adv Genet 59: 245–266

    Article  PubMed  CAS  Google Scholar 

  • Bodo C, Rissman EF (2006) New roles for estrogen receptor beta in behavior and neuroendocrinology. Front Neuroendocrinol 27(2): 217–232

    Article  PubMed  CAS  Google Scholar 

  • Brinton RD et al (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29(2): 313–339

    PubMed  CAS  Google Scholar 

  • Carlson AA et al (2006) Elevated prolactin levels immediately precede decisions to babysit by male meerkat helpers. Horm Behav 50(1): 94–100

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove KP et al (2007) Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 62(8): 847–855

    Article  PubMed  CAS  Google Scholar 

  • Davies W et al (2008) Imprinted genes and neuroendocrine function. Front Neuroendocrinol 29(3): 413–427

    Article  PubMed  CAS  Google Scholar 

  • Delahunty KM et al (2007) Prolactin responses to infant cues in men and women: effects of parental experience and recent infant contact. Horm Behav 51(2): 213–220

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald PJ (2008) A neurotransmitter System theory of sexual orientation. J Sex Med 5(3): 746–748

    Article  PubMed  Google Scholar 

  • Friedman RC, Downey JI (2008) Sexual differentiation of behavior: the foundation of a developmental model of psychosexuality. J Am Psychoanal Assoc 56(1): 147–175

    Article  PubMed  Google Scholar 

  • Guastella AJ et al (2008) Oxytocin enhances the encoding of positive social memories in humans. Biol Psychiatry 64(3): 256–258

    Article  PubMed  CAS  Google Scholar 

  • Hammock EA, Young LJ (2006) Oxytocin, vasopressin and pair bonding: implications for autism. Philosoph Transact R Soc Lond B Biol Sci 361(1476): 2187–2198

    Article  CAS  Google Scholar 

  • Hines M (2003) Sex steroids and human behavior: prenatal androgen exposure and sex-typical play behavior in children. Ann NY Acad Sci 1007: 272–282

    Article  PubMed  CAS  Google Scholar 

  • Kosfeld M et al (2005) Oxytocin increases trust in humans. Nature 435: 673–676

    Article  PubMed  CAS  Google Scholar 

  • Manson JE (2008) Prenatal exposure to sex steroid hormones and behavioral/cognitive outcomes. Metabolism 57(Suppl 2): 16–21

    Article  CAS  Google Scholar 

  • Negri-Cesi P et al (2004) Sexual differentiation of the brain: role of testosterone and its active metabolites. J Endocrinol Invest 27(Suppl 6): 120–127

    PubMed  CAS  Google Scholar 

  • Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20(6): 858–865

    Article  PubMed  CAS  Google Scholar 

  • Sato SM et al (2008) Adolescents and androgens, receptors and rewards. Horm Behav 53(5): 647–658

    Article  PubMed  CAS  Google Scholar 

  • Schradin C, Anzenberger G (1999) Prolactin, the hormone of paternity. News Physiol Sci 14: 223–231

    PubMed  CAS  Google Scholar 

  • Storey AE et al (2006) Social and hormonal bases of individual differences in the parental behaviour of birds and mammals. Can J Exp Psychol 60(3): 237–245

    PubMed  Google Scholar 

  • Swaab DF (2004) Sexual differentiation of the human brain: relevance for gender identity, transsexualism and sexual orientation. Gynecol Endocrinol 19(6): 301–312

    Article  PubMed  CAS  Google Scholar 

  • Tramontin AD et al (2003) Androgens and estrogens induce seasonal-like growth of song nuclei in the adult songbird brain. J Neurobiol 57: 130–140

    Article  PubMed  CAS  Google Scholar 

  • Wade J, Arnold AP (2004) Sexual differentiation of the zebra finch song System. Ann NY Acad Sci 1016: 540–559

    Article  PubMed  CAS  Google Scholar 

  • Wager TD, Ochsner KN (2005) Sex differences in the emotional brain. Neuroreport 16(2): 85–87

    Article  PubMed  Google Scholar 

  • Wagner CK (2006) The many faces of progesterone: a role in adult and developing male brain. Front Neuroendocrinol 27(3): 340–359

    Article  PubMed  CAS  Google Scholar 

  • Walter H (2003) Liebe und Lust. Ein intimes Verhältnis und seine neurobiologischen Grundlagen. In: Buschlinger W et al (eds) Philosophie von einem rationalen Standpunkt. Hirzel, Stuttgart

    Google Scholar 

  • Zhu YS, Cai LQ (2006) Effects of male sex hormones on gender identity, sexual behavior, and cognitive function. J Cent South Univ. Med Sci 31(2): 149–161

    CAS  Google Scholar 

Schwangerschaft

  • d’Hauterive PS et al (2007) Dialogue between blastocyst hCG and endometrial LH/hCG receptor: which role in Implantation? Gynecol Obstet Investig 64(3): 156–160

    Article  CAS  Google Scholar 

  • Freemark M (2006) Regulation of maternal metabolism by pituitary and placental hormones: roles in fetal development and metabolic programming. Horm Res 65(Suppl 3): 41–49

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou TC et al (2001) Human chorionic gonadotropin levels after blastocyst transfer are highly predictive of pregnancy outcome. Fertil Steril 76: 981–987

    Article  PubMed  CAS  Google Scholar 

  • Rull K et al (2008) Fine-scale quantification of HCG beta gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues. Mol Hum Reprod 14(1): 23–31

    Article  PubMed  CAS  Google Scholar 

Xenoestrogene, endokrine Disruptoren

  • Anway MD, Skinner MK (2006) Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147(Suppl 6): S43–S49

    Article  PubMed  CAS  Google Scholar 

  • Lehigh Shirey EA et al (2006) Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone System gene expression in developing Xenopus laevis. Environ Res 102(2): 205–214

    Article  PubMed  CAS  Google Scholar 

  • Pombo M, Castro-Feijoo L (2005) Endocrine disruptors. J Pediat Endocrinol 18(Suppl 1): 1145–1155

    CAS  Google Scholar 

  • Sharpe RM (2001) Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicology 120: 221–232

    CAS  Google Scholar 

  • Sikka SC, Wang R (2008) Endocrine disruptors and estrogenic effects on male reproductive axis. Asian J Androl 10(1): 134–145

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaak NE et al (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16: 972–978

    Article  Google Scholar 

  • Uzumcu M, Zachow R (2007) Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function. Reprod Toxicol 23(3): 337–352

    Article  PubMed  CAS  Google Scholar 

Hormone und Metamorphose

  • Buchholz DR et al (2006) Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 145(1): 1–19

    Article  PubMed  CAS  Google Scholar 

  • Das B et al (2006) Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles. Dev Biol 291(2): 342–355

    Article  PubMed  CAS  Google Scholar 

  • De Loof A (2008) Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges. Gen Comp Endocrinol 155(1): 3–13

    Article  PubMed  CAS  Google Scholar 

  • Denver RJ (2008) Chordate metamorphosis: ancient control by iodothyronines. Curr Biol 18(13): R567–R569

    Article  PubMed  CAS  Google Scholar 

  • Furlow JD, Neff ES (2006) A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab 17(2): 40–47

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Shi YB (2007) Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Dev Dyn 236(12): 3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Minakuchi C et al (2008) RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 275(11): 2919–2931

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu D et al (2008) The role of 20-hydroxyecdysone and juvenile hormone in pupal commitment of the epidermis of the silkworm, Bombyx mori . Mech Dev 125(5-6): 411–420

    Article  PubMed  CAS  Google Scholar 

  • Paris M et al (2008) Amphioxus postembryonic development reveals the homology of chordate metamorphosis. Curr Biol 18(11): 825–830

    Article  PubMed  CAS  Google Scholar 

  • Riddiford LM et al (2003) Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol 33(12): 1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Tata JR (2006) Amphibian metamorphosis äs a model for the developmental actions of thyroid hormone. Mol Cell Endocrinol 246(1-2): 10–20

    Article  PubMed  CAS  Google Scholar 

  • Truman JW, Riddiford LM (2007) The morphostatic actions of juvenile hormone. Insect Biochem Mol Biol 37(8): 761–770

    Article  PubMed  CAS  Google Scholar 

  • Wilson TG (2004) The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. J Insect Physiol 50(2-3): 111–121

    Article  PubMed  CAS  Google Scholar 

  • Yun-Bo Shi (2000) Amphibian metamorphosis. Wiley-Liss, New York

    Google Scholar 

  • Zitnan D et al (2007) Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen Comp Endocrinol 153(1-3): 88–96

    Article  PubMed  CAS  Google Scholar 

Neues zur molekularen Wirkung der Hormone

  • De Meyts P (2008) The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Trends Biochem Sci 33(8): 376–384

    Article  PubMed  CAS  Google Scholar 

  • Mehrere Artikel zu nicht-genomischen Wirkungen vonThyroxin und Steroidhormonen in Frontiers in Neuroendocrinology 29(2) 2008

    Google Scholar 

  • Visser WE et al (2008) Thyroid hormone transport in and out of Cells. Trends Endocrinol Metab 19(2): 50–56

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W., Frings, S. (2009). Hormonale Steuerung. In: Tier- und Humanphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00462-9_11

Download citation

Publish with us

Policies and ethics