Skip to main content

Using Airborne GNSS Receivers to Detect Atmospheric Turbulence

  • Chapter
  • First Online:
New Horizons in Occultation Research

Abstract

A methodology for estimating turbulence intensity from GNSS-aircraft occultations is presented. The theoretical underpinnings are from standard weak-scattering theory for electromagnetic wave propagation in random media. These techniques are modified to deal with a transmitter and receiver moving relative to each other. A simulation method is then used to evaluate the sensitivity of the intensity estimates to two other unknown parameters, the turbulence length scale and the distance of the turbulence from the receiver. It is shown that the estimation is highly sensitive to the latter and relatively insensitive to the former. An iterative technique is presented that uses estimates of the distance parameters to improve the intensity estimation. It is shown that given the assumptions in the problem, the iterative technique provides relatively accurate estimates of the turbulence intensity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (eds) (1972) Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C.

    Google Scholar 

  • Bhattacharyya A, Yeh KC, Franke SJ (1992) Deducing turbulence parameters from transionospheric scintillation measurements. Space Sci Rev 61(3–4):335–386

    Google Scholar 

  • Conker RS, El-Arini MB, Hegarty CJ, Hsiao T (2003) Modeling the effects of ionospheric scintillation of GPS/Satellite-Based Augmentation System availability. Radio Sci 38(1), doi:10.1029/2000RS002604

    Google Scholar 

  • Cornman LB, Frehlich R, Praskovskaya E (2004) The Detection of Upper Level Turbulence via GPS Occultation Methods. In: Kirchengast G, Foelsche U, Steiner AK (eds) Occultations for Probing the Atmosphere and Climate, Springer-Verlag, Berlin Heidelberg New York, pp 365–373

    Google Scholar 

  • Ganguly S, Jovancevic A, Brown A, Kirchner M, Zigic S, Beach T, Groves KM (2004) Ionospheric scintillation monitoring and mitigation using a software GPS receiver. Radio Sci 39(RS1S21), doi:10.1029/2002RS002812

    Google Scholar 

  • Gorbunov ME, Kirchengast G (2005) Processing X/K band radio occultation data in the presence of turbulence. Radio Sci 40(RS6001), doi:10.1029/2005RS003263

    Google Scholar 

  • Hajj GA, nez Meier RI, Kursinski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imaging Syst Technol 5:174–184

    Article  Google Scholar 

  • Ishimaru A (1997) Wave Propagation and Scattering in Random Media. IEEE Press, New York

    Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102(D19):23429–23465

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical Recipes (FORTRAN version). Cambridge University Press, Cambridge

    Google Scholar 

  • Secan JA, Bussey RM, Fremouw EJ, Basu S (1997) High-latitude upgrade to the Wideband ionospheric scintillation model. Radio Sci 32(4):1567–1574

    Article  Google Scholar 

  • Smalikho IN (1997) Accuracy of the turbulent energy dissipation rate stimation from the temporal spectra of wind velocity fluctuations. Atmos Ocean Opt 10(8):559–563

    Google Scholar 

  • Tatarskii VI (1971) The Effects of the Turbulent Atmosphere on Wave Propagation. U.S. Department of Commerce and National Science Foundation, Washington, D.C.

    Google Scholar 

  • Tereshchenko ED, Kozlova MO, Kunitsyn VE, Andreeva ES (2004) Statistical tomography of subkilometer irregularities in the high-latitude ionosphere. Radio Sci 39(RS1S35), doi:10.1029/2002RS002829

    Google Scholar 

  • Vorob’ev VV, Kan V (1999) Background fluctuations in the GPS-Microlab-1 ionospheric radio sounding experiment. Radiophys Quantum Electron 42(6):451–462

    Article  Google Scholar 

  • Yeh KC, Liu CH (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70(4):324–360

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the great support provided by our sponsor, Brian Tillotson, from the Boeing Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.B. Cornman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cornman, L., Weekley, A., Goodrich, R., Frehlich, R. (2009). Using Airborne GNSS Receivers to Detect Atmospheric Turbulence. In: Steiner, A., Pirscher, B., Foelsche, U., Kirchengast, G. (eds) New Horizons in Occultation Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00321-9_4

Download citation

Publish with us

Policies and ethics