Skip to main content

Trend Indicators of Atmospheric Climate Change Based on Global Climate Model Scenarios

  • Chapter
  • First Online:

Abstract

The upper troposphere-lower stratosphere (UTLS) region is reacting particularly sensitive to climate change and variations of its key parameters are very good candidates for the monitoring and diagnosis of climate change. This study aims at revealing the most promising atmospheric climate change indicators in this region which are accessible by radio occultation (RO) observations. RO based climatologies show the highest data quality in the UTLS. Due to the availability of continuous RO data only since the end of 2001, longer-term climatologies of three representative global climate models were investigated in this respect. We demonstrate that the RO method can valuably contribute to climate monitoring by providing climatologies of a set of atmospheric parameters such as refractivity, geopotential height, and temperature, which differ in sensitivity at different heights and in different regions and cover the UTLS as a whole.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    World Climate Research Programme’s (WCRP’s) Working Group on Coupled Modelling (WGCM)

  2. 2.

    esg.llnl.gov:8080/home/publicHomePage.do, 11/2007

References

  • Andrews DG, Holton JR, Leovy CB (1987) Middle Atmosphere Dynamics. Academic Press, New York

    Google Scholar 

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: Early results. Bull Am Meteorol Soc 89:313–333, doi:10.1175/BAMS-89-3-313

    Google Scholar 

  • Borsche M, Gobiet A, Steiner AK, Foelsche U, Kirchengast G, Schmidt T, Wickert J (2006) Pre-operational retrieval of radio occultation based climatologies. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and Climate: Studies by Occultation Methods, Springer-Verlag, Berlin Heidelberg New York, pp 315–323, doi:10.1007/3-540-34121-8-26

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 847–940

    Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Climate 19(11):2122–2143

    Article  Google Scholar 

  • Cordero EC, de Forster PM (2006) Stratospheric variability and trends in models used for the IPCC AR4. Atmos Chem Phys 6(12):5369–5380

    Article  Google Scholar 

  • Foelsche U, Borsche M, Steiner AK, Gobiet G, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2008) Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite. Clim Dyn 31:49–65, doi:10.1007/s00382-007-0337-7

    Google Scholar 

  • Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensembles simulations with the HadCM2 coupled AOGCM. Clim Dyn 16:169–182

    Article  Google Scholar 

  • Gobiet A, Kirchengast G (2004) Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility. J Geophys Res 109(D24110), doi:10.1029/2004JD005117

    Google Scholar 

  • Gobiet A, Kirchengast G, Manney GL, Borsche M, Retscher C, Stiller G (2007) Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmos Chem Phys 7:3519–3536

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109(D06109), doi:10.1029/2003JD003909

    Google Scholar 

  • Holton JR (2004) An Introduction to Dynamic Meteorology, International Geophysics, vol 88, 4th edn, Academic Press, New York

    Google Scholar 

  • Karl TR, Hassol SJ, Miller CD, Murray WL (2006) Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences. A Report by the Climate Change Science Program and the Subcommittee on Global Change Research,Washington, DC

    Google Scholar 

  • Kursinski ER, Hajj GA (2001) A comparison of water vapor derived from GPS occultations and global weather analyses. J Geophys Res 106(D1):1113–1138, doi:10.1029/2000JD900421

    Google Scholar 

  • Leroy SS, Anderson JG, Dykema JA (2006) Testing climate models using GPS radio occultation: A sensitivity analysis. J Geophys Res 111(D17105), doi:10.1029/2005JD006145

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP32 multimodel dataset: A new era in climate change research. Bull Am Meteorol Soc doi:10.1175/BAMS-88-9-1383

    Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  • Ringer MA, Healy SB (2008) Monitoring twenty-first century climate using GPS radio occultation bending angles. Geophys Res Lett 35(L05708), doi:10.1029/2007GL032462

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The Atmospheric General Circulaton Model ECHAM5. Report No. 349, Max-Planck-Institute for Meteorology, Hamburg, Germany, 127 pp

    Google Scholar 

  • Roeckner E, Jungclaus J, Mikolajewicz U, Hagemann S (2005) Model Information of Potential Use to the IPCC Lead Authors and the AR4: ECHAM5_MPI-OM. available from http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php

  • Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(D6):7337–7356

    Article  Google Scholar 

  • Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037

    Article  Google Scholar 

  • Steiner AK, Löscher A, Kirchengast G (2006) Error characteristics of refractivity profiles retrieved from CHAMP radio occultation data. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and Climate: Studies by Occultation Methods, Springer-Verlag, Berlin Heidelberg, New York, pp 27–36

    Google Scholar 

  • Wickert J, Schmidt T, Beyerle G, König R, Reigber C, Jakowski N (2004) The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles. J Meteorol Soc Jpn 82:381–395

    Article  Google Scholar 

  • Wilks DS (2005) Statistical Methods in the Atmospheric Sciences: An Introduction (International Geophysics). Academic Press Inc, New York

    Google Scholar 

Download references

Acknowledgements

We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. This work was funded by the Austrian Science Fund (FWF) Project INDICATE P18733-N10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.C. Lackner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lackner, B., Steiner, A., Ladstädter, F., Kirchengast, G. (2009). Trend Indicators of Atmospheric Climate Change Based on Global Climate Model Scenarios. In: Steiner, A., Pirscher, B., Foelsche, U., Kirchengast, G. (eds) New Horizons in Occultation Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00321-9_20

Download citation

Publish with us

Policies and ethics