Skip to main content

Cyclic Peptides and Depsipeptides from Fungi

  • Chapter
  • First Online:
Book cover Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

This chapter describes the occurrence of cyclic peptides and cyclic depsipeptides within the kingdom Eumycota (true fungi), the diversity of structures and their chemical building blocks, their ecological roles and their different biological activities. Finally, it discusses the importance of cyclic peptides and depsipeptides as drugs and lead compounds for agricultural and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbanat D, Leighton M, Maiese W, Jones EBG, Pearce C, Greenstein M (1998) Cell wall active compounds produced by the marine fungus Hypoxylon oceanicum LL-15G56. J Antibiot 51:296–302

    CAS  PubMed  Google Scholar 

  • Adachi K, Kanoh K, Wisespong P, Nishijima M, Shizuri Y (2005) Clonostachysins A and B, new antidinoflagellate cyclic peptides from a marine-derived fungus. J Antibiot 58:145–150

    CAS  PubMed  Google Scholar 

  • Ahn JH, Walton JD (1998) Regulation of cyclic peptide biosynthesis and pathogenicity in Cochliobolus carbonum by TOXEP, a novel protein with a bZIP basic DNA-binding motif and four ankyrin repeats. Mol Gen Genet 260:462–469

    CAS  PubMed  Google Scholar 

  • Amitani R, Taylor G, Elezis EN, Liewellyn-Jones C, Mitchell J, Kuze F, Cole PJ, Wilson R (1995) Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium. Infect Immun 63:3266–3271

    CAS  PubMed  Google Scholar 

  • Anke H, Sterner O (2002) Insecticidal and nematicidal metabolites from fungi. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 109–127

    Google Scholar 

  • Anke H, Kinn J, Bergquist KE, Sterner O (1991) Production of siderophores by strains of the genus Trichoderma: Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol Metals 4:176–180

    CAS  Google Scholar 

  • Anke T, Erkel O (2002) Non β-lactam antibiotics. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 93–108

    Google Scholar 

  • Antelo L, Hof C, Eisfeld K, Sterner O, Anke H (2006) Siderophores produced by Magnaporthe grisea in the presence and absence of iron. Z Naturforsch. 61c:461–464

    Google Scholar 

  • Aoyagi A, Yano T, Kozuma S, Takatsu T (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:143–152

    CAS  Google Scholar 

  • Arai N, Shiomi K, Iwai Y, Omura S (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot 53:609–614

    CAS  Google Scholar 

  • Badan SD, Ridley DD, Singh P (1978) Isolation of cyclodepsipeptides from plant pathogenic fungi. Aust J Chem 31:1397–1399

    Google Scholar 

  • Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1998) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahedron Lett 39:5497–5500

    CAS  Google Scholar 

  • Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916

    CAS  Google Scholar 

  • Bertram A, Pattenden G (2007) Marine metabolites: metal binding and metal complexes of azole-based cyclic peptides of marine origin. Nat Prod Rep 24:18–30

    CAS  PubMed  Google Scholar 

  • Betina V (1989) Epipolythiopiperazine-3,6-diones. In: Mycotoxins, chemical, biological and evironmental aspects. Elsevier, Amsterdam, pp 388–405

    Google Scholar 

  • Bills GF, Platas G, Peláez F, Masurekar P (1999) Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192

    CAS  Google Scholar 

  • Birch AJ, Massy-Westropp RA, Rickards RW (1956) Studies in relation to biosynthesis. Part VIII. The structure of mycelianamide. J Chem Soc 3717-3721

    Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78

    CAS  PubMed  Google Scholar 

  • Boros C, Smith CJ, Vasina Y, Che Y, Dix AB, Darveaux B, Pearce C (2006) Isolation and identification of the icosalides – cyclic peptolides with selective antibiotic and cytotoxic activities. J Antibiot 59:486–494

    CAS  PubMed  Google Scholar 

  • Boudart G (1989) Antibacterial activity of sirodesmin PL phytotoxin: application to the selection of phytoxin-deficient mutants. Appl Enivron Microbiol 55:1555–1559

    CAS  Google Scholar 

  • Büchel E, Martini U, Mayer A, Anke H, Sterner O (1998a) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuaration of omphalotin A. Tetrahedron 54:5345–5352

    Google Scholar 

  • Büchel E, Mayer A, Martini U, Anke H, Sterner O (1998b) Structure elucidation of omphalotin, a cyclic dodecapeptide with potent nematicidal activity from Omphalotus olearius. Pest Sci 54:309–311

    Google Scholar 

  • Buckingham J (2008) (Ed) Dictionary of natural products on DVD, version 17.1. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2154

    CAS  PubMed  Google Scholar 

  • Capon RJ, Skene C, Stewart M, Ford J, O'Hair RAJ, Williams L, Lacey E, Gill JH, Heiland K, Friedel T (2003) Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Org Biomol Chem 1:1856–1862

    CAS  PubMed  Google Scholar 

  • Che Y, Swenson DC, Gloer JB, Koster B, Malloch D (2001) Pseudodestruxins A and B: new cycllic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558

    CAS  PubMed  Google Scholar 

  • Chen CH, Lang G, Mitova MI, Murphy AC, Cole ALJ, Din LB, Blunt JW, Munro MHG (2006) Pteratides I-IV, new cyctotoxic cyclodepsipeptides from the Malaysian basidiomycete Pterula sp. J Org Chem 71:7947–7951

    CAS  PubMed  Google Scholar 

  • Closse A, Huguenin R (1974) Isolierung und Strukturaufklärung von Chlamydocin. Helv Chim Acta 57:533–545

    CAS  PubMed  Google Scholar 

  • Cole RJ, Schweikert MA (2003) Diketopiperazines. In: Handbook of secondary fungal metabolites, vol 1. Academic, Amsterdam, pp 145–244

    Google Scholar 

  • Conder GA, Johnson SS, Nowakowski DS, Blake TE, Dutton FE, Nelson SJ, Thomas EM, Davis JP, Thompson DP (1995) Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. J Antibiot 48:820–823

    Google Scholar 

  • Curtis RW, Stevenson WR, Tuite J (1974) Malformin in Aspergillus niger-infected onion bulbs (Allium cepa). Appl Environ Microbiol 28:362–365

    CAS  Google Scholar 

  • Daferner M (2000) Antibiotisch aktive Sekundärstoffe aus höheren marinen Pilzen. Dissertation, University of Kaiserslautern

    Google Scholar 

  • Dalsgaard PW, Blunt JW, Munro MHG, Larsen TO, Christophersen C (2004a) Psychrophilin B and C: cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67:1950–1952

    CAS  Google Scholar 

  • Dalsgaard PW, Larsen TO, Frydenvang K, Christophersen C (2004b) Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881

    CAS  Google Scholar 

  • Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141–144

    CAS  PubMed  Google Scholar 

  • Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarel MA, Singh SB, Goetz MA, Dombrowski AW, Polishook ED, Schmatz DM (1996) Apicidin, a novel antiprotozoal agent that inhibits parasite histone deacetylase Proc Natl Acad Sci USA 93:13143–31147

    CAS  PubMed  Google Scholar 

  • Davoli P, Mucci A, Schenetti L, Weber RWS (2005) Laetiporic acids, a family of non-carotenoid polyene pigments from fruit-bodies and liquid cultures of Laetiporus sulphureus (Polyporales, Fungi). Phytochemistry 66:817–823

    CAS  PubMed  Google Scholar 

  • !de Schepper S, Bruwiere H, Verhulst T, Steller U, Andries L, Wouters W, Janicot M, Arts J, van Heusden J (2003) Inhibition of histone deacylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin. J Pharmacol Exp Ther 304:881–888

    CAS  PubMed  Google Scholar 

  • Degenkolb T, Gams W, Brückner H (2008) Natural cyclopeptaibols and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodiver 5:693–706

    CAS  Google Scholar 

  • Demain AL, Elander RP (1999) The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19

    CAS  PubMed  Google Scholar 

  • Denning DW (2002) Echinocandins: a new class of antifungals. J Antimicrob Chemother 49:889–891

    CAS  PubMed  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    CAS  PubMed  Google Scholar 

  • Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kamper J, Mueller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:3332–3345

    CAS  PubMed  Google Scholar 

  • Eickman N, Clardy J, Cole RJ, Kirksey JW (1975) The structure of fumitremorgin A. Tetrahedron Lett 16:1051–1054

    Google Scholar 

  • Eisendle M, Schrettl M, Kragl C, Müller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–603

    CAS  PubMed  Google Scholar 

  • Elliott CE, Gardiner DM, Thoma G, Cozijnsen A, van de Wouw A, Howlett BJ (2007) Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8:791–802

    CAS  PubMed  Google Scholar 

  • Ernst-Russell M, Chai CL, Hurne AM, Waring P, Hockless DCR, Elix JA (1999) Structure revision and cytotoxic activity ot the scabrosin esters, epithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust J Chem 52:279–283

    CAS  Google Scholar 

  • Feifel SC, Schmiederer T, Hornbogen T, Berg H, Süssmuth RD, Zocher R (2007) In vitro synthesis of new enniatins: probing the α-d-hydroxy carboxylic acid binding pocket of the multienzyme enniatin synthetase. ChemBioChem 8:1767–1770

    CAS  PubMed  Google Scholar 

  • Fostel JM, Lartey PA (2000) Emerging novel antifungal agents. Drug Discov Today 5:25–32

    CAS  PubMed  Google Scholar 

  • Fredenhagen A, Molleyres LP, Böhlendorf B, Laue G (2006) Structure determination of neofrapeptins A to N: peptides with insecticidal activity produced by the fungus Geotrichum candidum. J Antibiot 59:267–280

    CAS  PubMed  Google Scholar 

  • Fridrichsons J, Mathieson AMCL (1962) The structure of sporidesmin: causative agent of facial eczema in sheep. Tetrahedron Lett 3:1265–1268

    Google Scholar 

  • Fujie A, Iwamoto T, Muramatsu H, Okudaira T, Nitta K, Nakanishi T, Sakamoto K, Hori Y, Hino M, Hashimoto S, Okuhara M (2000) FR901469, a novel antifungal antibiotic from an unidentified fungus No 11243. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J Antibiot 53:912–919

    CAS  PubMed  Google Scholar 

  • Fujie A, Muramatsu H, Yoshimura S, Hashimoto M, Shigematsu N, Takase S (2001) FR901469, a novel antifungal antibiotic from an unidentified fungus No 112434. III. Structure determination. J Antibiot 54:588–594

    CAS  PubMed  Google Scholar 

  • Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032

    CAS  PubMed  Google Scholar 

  • Gevers W, Kleinkauf H, Lipmann F (1968) The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci USA 63:1335–1342

    Google Scholar 

  • Glinski M, Hornbogen T, Zocher R (2001) Enzymatic synthesis of fungal N-methylated cyclopeptides and depsipeptides. In: Kirst H, Yeh WK, Zmijewski M (eds) Enzyme technologies for pharmaceutical and biotechnological applications. Dekker, New York, pp 471–497

    Google Scholar 

  • Gournelis DC, Laskaris GG, Verpoorte R (1998) Cyclopeptide alkaloids In: Herz W, Falk H, Kirby GW, Moore RE, Tamm Ch (eds) Fortschritte der Chemie organischer Naturstoffe, vol 75. Springer, Heidelberg, pp 1–179

    Google Scholar 

  • Gross ML, McCrery D, Crow F, Tomer KB, Pope MR, Ciuffetti LM, Knoche HW, Daly JM, Dunkle DL (1982) The structure of the toxin from Helminthosporium carbonum. Tetrahedron Lett 51:5381–5384

    Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    CAS  PubMed  Google Scholar 

  • Gupta S, Peiser G, Nakajima T, Hwang Y-S (1994) Characterization of a phytotoxic cyclotetrapeptide, a novel chlamydocin analogue, from Verticillium coccosporum. Tetrahedron Lett 35:6009–6012

    CAS  Google Scholar 

  • Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187

    CAS  PubMed  Google Scholar 

  • Hagimori K, Fukuda T, Hasegawa Y, Omura S, Tomoda H (2007) Fungal malformins inhibit bleomycin-induced G2 checkpoint in Jurkat cells. Biol Pharm Bull 30:1379–1383

    CAS  PubMed  Google Scholar 

  • Hashimoto S (2009) Micafungin: a sulfated echinocandin. J Antibiot 62:27–35

    CAS  PubMed  Google Scholar 

  • Hedge VR, Puar MS, Dai P, Pu H, Patel M, Anthes JC, Richard C, Terracciano J, Das PR, Gullo V (2001) A family of depsipeptide fungal metabolites, as selective and competitive human tachykinin receptor (NK2) antagonists: fermentation, isolation, physico-chemical properties, and biological activity. J Antibiot 54:125–135

    CAS  PubMed  Google Scholar 

  • Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity. Mol Plant Pathol 8:163–172

    CAS  PubMed  Google Scholar 

  • Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H (2009) Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol 46:321–332

    Google Scholar 

  • Hommel U, Weber H-P, Oberer L, Naegeli HU, Oberhauser B, Foster CA (1996) The 3D-structure of a natural inhibitor of cell adhesion molecule expression. FEBS Lett 379:69–73

    CAS  PubMed  Google Scholar 

  • Houston DR, Shiomi K, Arai N, Omura S, Peter MG, Turberg A, Synstad B, Eijsink VG, van Aalten DMF (2002) High-resolution structures of a chitinase complex with natural product cyclopentapeptide inhibitors: Mimicry of carbohydrate substrate Proc Natl Acad Sci USA 99:9127–9132

    CAS  PubMed  Google Scholar 

  • Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404

    CAS  PubMed  Google Scholar 

  • Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a Mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699

    CAS  PubMed  Google Scholar 

  • Hume AM, Chai CLL, Moermann K, Waring P (2002) Influx of calcium through a redox-sensitive plasma membrane channel in thymocytes causes early necrotic cell death induced by the epipolythiodioxopiperazine toxins. J Biol Chem 35:31631–31638

    Google Scholar 

  • Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053

    CAS  PubMed  Google Scholar 

  • Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NI, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823

    CAS  Google Scholar 

  • Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005b) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260

    CAS  Google Scholar 

  • Isaka M, Palasarn S, Kocharin K, Hywel-Jones NI (2007) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiotics 60:577–581

    CAS  Google Scholar 

  • Ishiyama D, Sato T, Honda R, Senda H, Konno H, Kanazawa S (2000) Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. II. Structure elucidation. J Antibiot 53:525–631

    CAS  PubMed  Google Scholar 

  • Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yashuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, Terui A, Yoshimatsu S, Ikenishi Y, Nakagawa Y (1990) Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation. J Antibiot 43:1524–1532

    CAS  PubMed  Google Scholar 

  • Iwamoto T, Fujie A, Nitta K, Hashimoto S, Okuhara M, Kohsaka M (1994a) WF11899A, B and C, novel antifungal lipopeptides II. Biological properties. J Antibiot 45:1092–1097

    Google Scholar 

  • Iwamoto T, Fujie A, Sakamota K, Tsurumi Y, Shigematsu N, Yamashita M, Hashimoto S, Okuhara M, Kohsaka M (1994b) WF11899A, B and C, novel antifungal lipopeptides I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 47:1084–1091

    CAS  Google Scholar 

  • Jiang Z, Barret MO, Boyd KG, Adams DR, Boid ASF, Burgess JG (2002) JM47, a cyclic tetrapeptide HC-toxin analogue from a marine Fusarium species. Phytochemistry 60:33–38

    CAS  PubMed  Google Scholar 

  • Johnson MD, Perfect JR (2003) Caspofungin: first approved agent in a new class of antifungals. Expert Opin Pharmacother 4:807–823

    PubMed  Google Scholar 

  • Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagami Y (2001) New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquantic hyphomycete, Clavariopsis aquatica. J Antibiot 54:17–21

    CAS  PubMed  Google Scholar 

  • Kajimura Y, Aoki T, Kuramochi K, Kobayashi S, Sugawara F, Watanabe N, Arai T (2008) Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity. J Antibiot 61:330–333

    CAS  PubMed  Google Scholar 

  • Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43[Suppl 1]:95–99

    Google Scholar 

  • Kanasaki R, Abe F, Kobayashi M, Katsuoka M, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006a) FR220897 and FR220899, novel antifungal lipopeptides from Coleophoma empetri No. 14573. J Antibiot 59:149–157

    CAS  Google Scholar 

  • Kanasaki R, Kobayashi M, Fujine K, Sato I, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S (2006b) FR227673 and FR190293, novel antifungal lipopeptides from Chalara sp. No22210 and Tolypocladium parasiticum No 16616. J Antibiot 59:158–167

    CAS  Google Scholar 

  • Kanasaki R, Sakamota K, Hashimoto M, Takase S, Tsurumi Y, Fujie A, Hino M, Hashimoto S, Hori Y (2006c) FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis No. 738. J Antibiot 59:137–144

    CAS  Google Scholar 

  • Keller U, Tudzynski P (2002) Ergot alkaloids. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 157–181

    Google Scholar 

  • Keller-Juslen C, Kuhn M, Loosli HR, Petcher TJ, Weber HP, von Wartburg A (1976) Struktur des Cyclopeptid-Antibiotikums SL 7810 (= Echinocandin B) Tetrahedron Lett 17:4147–4150

    Google Scholar 

  • Kershaw M, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invert Pathol 74:213–223

    CAS  Google Scholar 

  • Kleinkauf H, von Döhren H (1997) Peptide antibiotics. In: Kleinkauf H, von Döhren H (eds) Products of secondary metabolism. Biotechnology, vol 7. VCH, Weinheim, pp 277–322

    Google Scholar 

  • Kleinwachter P, Dahse HM, Luhmann U, Schlegel B, Dornberger K (2001) Epicorazine C, an antimicrobial metabolite from Stereum hirsutum HKI 0195. J Antibiot 54:521–525

    CAS  PubMed  Google Scholar 

  • Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Vhurchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924

    CAS  PubMed  Google Scholar 

  • Kobbe B, Cushman M, Wogan GN, Demain AL (1977) Production and antibacterial activity of malformin C, a toxic metabolite of Aspergillus niger. Appl Environ Microbiol 33:996–997

    CAS  PubMed  Google Scholar 

  • Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 129–155

    Google Scholar 

  • Lee KK, Gloer JB Scott JA, Malloch D (1995) Petriellin A: a novel antifungal depsipeptide from the coprophilous fungus Petriella sordida. J Org Chem 60:5384–5385

    CAS  Google Scholar 

  • Lewis JR (2002) Amaryllidaceae, Sceletium, imidazole, oxazole, thiazole, peptide and miscellaneous alkaloids. Nat Prod Rep 19:223–258

    CAS  PubMed  Google Scholar 

  • Li C, Oberlies NH (2005) The most widely recognized mushroom: chemistry of the genus Amanita. Life Sci 78:532–538

    CAS  PubMed  Google Scholar 

  • Li X, Kim S-K, Nam KW, Kang JS, Choi HD, Son BW (2006) A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. J Antibiot 59:248–250

    CAS  PubMed  Google Scholar 

  • Li Y, Li X, Kim S-K, Kang JS, Choi HD, Rho JR, Son BW (2004) Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Pharm Bull 52:375–376

    CAS  PubMed  Google Scholar 

  • Liermann JC, Kolshorn H, Antelo L, Hof C, Anke H, Opatz T (2009) Omphalotins E-I, oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem 2009:1256–1262

    Google Scholar 

  • Lira SP, Vita-Marques AM, Seleghim MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck RGS (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59:553–563

    CAS  PubMed  Google Scholar 

  • Liu J-K (2005) N-containing compounds of macromycetes. Chem Rev 105:2723–2744

    CAS  PubMed  Google Scholar 

  • Lorenz P, Jensen PR, Fenical W (1998) Mactanamide, a new fungistatic diketopiperazine produced by a marine Aspergillus sp. Nat Prod Lett 12:55–60

    CAS  Google Scholar 

  • Maligie MA, Selitrennikoff CP (2005) Cryptococcus neoformans resistance to echinocandins: (1,3) β-glucan synthase activity is senitive to echinocandins. Antimicrob Agents Chemother 49:2851–2856

    CAS  PubMed  Google Scholar 

  • Malmstrom J, Ryager A, Anthoni U, Nielsen PH (2002) Unguisin C, a GABA-containing cyclic peptide from the fungus Emericella unguis. Phytochemistry 60:869–887

    CAS  PubMed  Google Scholar 

  • Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 64:9923–9932

    Google Scholar 

  • Matha V, Jegorov A, Weiser J, Pillai JS (1992) The mosquitocidal activity of conidia of Tolypocladium tundrense and Tolypocladium terricola. Cytobios 69:163–170

    CAS  PubMed  Google Scholar 

  • Matsuda D, Namatame I, Tomoda H, Kobayashi S, Zocher R, Kleinkauf H, Omura S (2004) New beauverolides produced by amino acid-supplemented fermentation of Beauveria sp. FO-6979. J Antibiot 57:1–9

    CAS  PubMed  Google Scholar 

  • Mayer A, Sterner O, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. 1. Fermentation and biological activity. Nat Prod Lett 10:25–33

    CAS  Google Scholar 

  • Mayer A, Kilian M, Hoster B, Sterner O, Anke H (1999) In vitro and in vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55:27–30

    CAS  Google Scholar 

  • Miyado S, Kawasaki H, Aoyagi K, Yaguchi T, Okada T, Sugiyama J (2000) Taxonomic position of the fungus producing the anthelmintic PF1022 based on the 18S rRNA gene base sequence. Nippon Kinzoku Gakkai Kaiho 41:183–188

    Google Scholar 

  • Mochizuki K, Ohmori K, Tamura H, Shizuri Y, Nishiyama S, Miyoshi E, Yamamura S (1993) The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic fungi Beauveria sp. Bull Chem Soc Jpn 66:3041–3046

    CAS  Google Scholar 

  • Monma S, Sunazuka T, Nagai K, Arai T, Shiomi K, Matsui R, Mura S (2006) Verticilide: elucidation of absolute configuration and total synthesis. Org Lett 8:5601–5604

    CAS  PubMed  Google Scholar 

  • Mori H, Urano Y, Abe F, Furukawa S, Tsurumi Y, Sakamoto K, Hashimoto M, Takase S, Hino M, Fujii T (2003) FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC) 1. Taxonomy, fermentation, isolation, and biological activities. J Antibiot 56:72–79

    CAS  PubMed  Google Scholar 

  • Morino T, Masuda A, Yamada M, Nishimoto Y, Nishikiori T, Saito S, Shimada (1994) Stevastelins, novel immunosuppresssants produced by Penicillium. J Antibiot 47:1341–1343

    CAS  PubMed  Google Scholar 

  • Morris SA, Schwartz RE, Sesin DF, Masurekar P, Hallada TC, Schmatz DM, Bartizal K, Hensens OD, Zink DL (1994) Pneumocandin D0, a new antifungal agent and potent inhibitor of Pneumocystis carinii. J Antibiot 47:755–764

    CAS  PubMed  Google Scholar 

  • Morrison VA (2006) Echinocandin antifungals: review and update. Expert Rev Anti Infect Ther 4:325–342

    CAS  PubMed  Google Scholar 

  • Namatame I, Zomoda H, Ishibashi S, Omura S (2004) Antiatherogenic activity of fungal beauverolides, inhibitors of lipid droplet accumulation in macrophages. Proc Natl Acad Sci USA 101:737–742

    CAS  PubMed  Google Scholar 

  • Nilanonta C, Isaka M, Chanphen R, Thong-orn N, Tanticharoen M, Thebtaranonth Y (2003) Unusual enniatins produced by the insect pathogenic fungus Verticillium hemipterigenum: isolation and studies on precursor-directed biosynthesis. Tetrahedron 59:1015–1020

    CAS  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    CAS  PubMed  Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853

    CAS  PubMed  Google Scholar 

  • Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353

    CAS  PubMed  Google Scholar 

  • Ohshiro T, Rudel LL, Omura S, Tomoda H (2007) Selectivity of microbial acyl-CoA:cholesterol acyltransferase inhibitors towards isoenzymes. J Antibiot 60:43–51

    CAS  PubMed  Google Scholar 

  • Ohyama T, Kurihara Y, Ono Y, Ishikawa T, Miyakoshi S, Hamano K, Arai M, Suzuki T, Igari H, Suzuki Y, Inukai M (2000) Arborcandins A, B, C, D, E, and F, novel 1,3-beta-glucan synthase inhibitors: production and biological activities. J Antibiot 53:1108–1116

    CAS  PubMed  Google Scholar 

  • Panaccione DC, Cipoletti JR, Sedlock AB, Blemings KP, Schradl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J. Agric Food Chem 54:4582–4587

    CAS  PubMed  Google Scholar 

  • Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61[Suppl 1]:i19–i30

    CAS  PubMed  Google Scholar 

  • Patil BB, Wakharkar RD, Chincholkar SB (1995) Siderophores of Cunninghamella blakesleeana NCIM 687. World J Microbiol Biotechnol 15:265–268

    Google Scholar 

  • Pedley KF, Walton JD (2001) Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci USA 98:14174–14179

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596

    CAS  PubMed  Google Scholar 

  • Pomilio AB, Battista ME, Vitale AA (2006) Naturally-occurring cycopeptides: structures and bioactivity. Curr Org Chem 10:2075–2121

    CAS  Google Scholar 

  • Prasad C (1995) Bioactive cyclic peptides. Peptides 16:151–164

    CAS  PubMed  Google Scholar 

  • Rees NH, Penfold DJ, Rowe ME, Chowdhry BZ, Cole SCJ, Samuels RI, Turner DL (1996) NMR studies of the conformation of destruxin A in water and in acetonitrile. Magn Reson Chem 34:237–241

    CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison DC, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    CAS  Google Scholar 

  • Roth BD (1998) ACAT inhibitors: evolution from cholesterol-absorption inhibitors to antiatherosclerotic agents. Drug Discov Today 3:19–25

    CAS  Google Scholar 

  • Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousquet J-F (1988) Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57:45–53

    CAS  Google Scholar 

  • Rüegger A, Kuhn M, Lichti H, Loosli HR, Huguenin R, Quiquerez C, von Wartburg A (1975) Cyclosporin A, ein immunsuppressiv wirksamer Peptidmetabolit aus Trichoderma polysporum (Link ex Pers.) Rifai. Helv Chim Acta 59:1075–1092

    Google Scholar 

  • Saeger B, Schmitt-Wrede HP, Dehnhardt M, Benten WP, Krucken J, Harder A, Samson-Himmelstjerna von G, Wiegand H, Wunderlich F (2001) Latrophilin-like receptor from the parasitic nematode Haemonchus contortus as target for the anthelmintic depsipeptide PF1022A. FASEB J 15:1332–1334

    CAS  PubMed  Google Scholar 

  • Saito T, Hirai H, Kim Y-J, Kojima Y, Matsunaga Y, Nishida H, Sakakibara T, Suga O, Sujaku T, Kojima N (2002) CJ 15208, a novel kappa opioid receptor antagonist from a fungus, Ctenomyces serratus ATCC15502. J Antibiot 55:847–854

    CAS  PubMed  Google Scholar 

  • Samson-Himmelstjerna von G, Harder A, Sangster NC, Coles GC (2005) Efficacy of two cyclooctadepsipeptides, PF022A and emodepside, against anthelmintic-resistant nematodes in sheep and cattle. Parasitology 130:343–347

    Google Scholar 

  • Sarabia F, Chammaa S, Sánchez Ruiz A, Martín Ortiz L, López Herrera FJ (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309–1332

    CAS  PubMed  Google Scholar 

  • Sasaki T, Takagi M, Yaguchi T, Miyado S, Okada T, Koyama M (1992) A new anthelmintic cyclodepsipeptide, PF1022. J Antibiot 45:692–697

    CAS  PubMed  Google Scholar 

  • Sato T, Ishiyama D, Honda R, Senda H, Konno H, Tokumasu S, Kanazawa S (2000) Glomosporin, a novel cyclic depsipeptide from Glomospora sp. I. Production, isolation, physico-chemical properties, and biological activities. J Antibiot 53:597–602

    CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    CAS  PubMed  Google Scholar 

  • Scherkenbeck J, Jeschke P, Harder A (2002) PF1022A and related cyclodepsipeptides - a novel class of anthelmintics. Curr Topics Med Chem 7:759–777

    Google Scholar 

  • Schmidt FR (2002) Beta-lactam antibiotics: aspects of manufacture and therapy. In: Osiewacz HD (ed) Industrial applications. Mycota X. Springer, Heidelberg, pp 69–91

    Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M, Wallner A, Arst HN Jr, Haynes K, Haas H (2007) Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:1195–1207

    CAS  PubMed  Google Scholar 

  • Scott PM, Polonsky J, Merrien MA (1979) Configuration of the 3,12 double bond of roquefortine. J Agric Food Chem 27:201–202

    CAS  Google Scholar 

  • Seto Y, Takahasi K, Matsuura H, Kogami Y, Yada H, Yoshihara T, Nabeta K (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71:1470–1475

    CAS  PubMed  Google Scholar 

  • Shiono Y, Tschuchinari M, Shimanuki K, Miyajima T, Murayama T, Koseki T, Laatsch H, Funakoshi T, Takanami K, Suzuki K (2007) Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J Antibiot 60:309–316

    CAS  PubMed  Google Scholar 

  • Singh SB, Zink DL, Liesch JM, Mosley RT, Dombrowski AW, Bills GF, Darkin-Rattray SJ, Schmatz DM, Goetz MA (2002) Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem 67:815–825

    CAS  PubMed  Google Scholar 

  • Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28

    CAS  PubMed  Google Scholar 

  • Sterner O, Etzel W, Mayer A, Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. Nat Prod Lett 10: 33–38

    CAS  Google Scholar 

  • Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Müllbacher A, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6:1562–1569

    CAS  PubMed  Google Scholar 

  • Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738

    CAS  PubMed  Google Scholar 

  • Takahashi C, Numata A, Matsumura E, Minoura K, Eto H, Shingu T, Ito T, Hasgawa T (1994) Leptosins I and J, cytotoxic substances produced by a Leptosphaeria sp. physico-chemical properties and structures. J Antibiot 47:1242–1249

    CAS  PubMed  Google Scholar 

  • Tan LT, Cheng XC, Jensen PR, Fenical W (2003) Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium. J Org Chem 68:8767–8773

    CAS  PubMed  Google Scholar 

  • Tan NH, Zhou J (2006) Plant cyclopeptides. Chem Rev 106:840–895

    CAS  PubMed  Google Scholar 

  • Tan RX, Jensen PR, Williams PG, Fenical W (2004) Isolation and structure assignments of rostratins A–D, cytotoxic disulfides produced by the marine-derived fungus Exserohilum rostratum. J Nat Prod 67:1374–1382

    CAS  PubMed  Google Scholar 

  • Tani H, Fujii Y, Nakajima H (2001) Chlamydocin analogues from the soil fungus Peniophora sp.: structures and plant growth-retardant activity. Phytochemistry 58:305–310

    CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    CAS  PubMed  Google Scholar 

  • Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58

    CAS  PubMed  Google Scholar 

  • Traber R, Dreyfuss MM (1996) Occurrence of cyclosporins and cyclosporin-like peptolides in fungi. J Indust Microbiol 17:397–401

    CAS  Google Scholar 

  • Turner WB, Aldridge DC (1983) Diketopiperazines and related compounds. In: Fungal metabolites II. Academic, London, pp 405–423

    Google Scholar 

  • Ueno T, Nakashima T, Hayashi Y, Fukami H (1975) Structures of AM-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria mali. Agric Biol Chem 39:1115–1122

    CAS  Google Scholar 

  • Vey A, Matha V, Dumas C (2002) Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. J Invert Pathol 80:177–187

    CAS  Google Scholar 

  • Waring P, Beaver J (1996) Gliotoxin and related epipolythiodioxopiperazines. Gen Pharmacol 27:1311–1316

    CAS  PubMed  Google Scholar 

  • Waring P, Eichner RD, Müllbacher A (1988) The chemistry and biology of the immunomodulating agent gliotoxin and related epipolythiodioxopiperazines. Med Res Rev 8:499–524

    CAS  PubMed  Google Scholar 

  • Weber D, Erosa G, Sterner O, Anke T (2006) Cyclindrocyclin A, a new cytotoxic cyclopeptide from Cylindrocarpon sp. J Antibiot 59:495–499

    CAS  PubMed  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    CAS  PubMed  Google Scholar 

  • Welzel K, Eisfeld K, Antelo L, Anke T, Anke H (2005) Characterization of the ferrichrome A biosynthetic gene cluster in the homobasidiomycete Omphalotus olearius. FEMS Microbiol Lett 249: 157–163

    CAS  PubMed  Google Scholar 

  • Winkelmann W, Drechsel H (1997) Microbial siderophores. In: Kleinkauf H, von Döhren H (eds) Products of secondary metabolism. Biotechnology, vol 7. VCH, Weinheim, pp 199–246

    Google Scholar 

  • Wolstenholme WA, Vining LC (1966) Determination of amino acid sequences in oligopeptides by mass spectrometry VIII. The structure of isariin. Tetrahedron Lett 7:2785–2791

    Google Scholar 

  • Yano T, Aoyagi A, Kozuma S, Kawamura Y, Tanaka I, Suzuki Y, Takamatsu Y, Takatsu T, Inukai M (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J Antibiot 60:136–142

    CAS  Google Scholar 

  • Yin WQ, Zou JM, She ZG, Vrijmoed LLP, Jones EBG, Lin YC (2005) Two cyclic peptides produced by the endophytic fungus 2221 from Castaniopsis fissa on the South China sea coast. Chin Chem Lett 16:219–222

    CAS  Google Scholar 

  • Yoshioka H, Nakatsu K, Sato M, Tatsuno T (1973) The molecular structure of cyclochlorotine, a toxic chlorine-containing peptapentide. Chem Lett 12:1319–1322

    Google Scholar 

  • Zhang P, Chen Z, Hu J, Wei B, Zhang Z, Hu W (2005) Production and characterization of amanitin toxins from a pure culture of Amanita exitialis. FEMS Microbiol Lett 252:223–228

    CAS  PubMed  Google Scholar 

  • Zheng CJ, Oark SH, Koshino H, Kim YH, Kim WG (2007) Verticillin G, a new antibacterial compound from Bionectria byssicola. J Antibiot 60:61–64

    CAS  PubMed  Google Scholar 

  • Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596

    Google Scholar 

  • Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Google Scholar 

Download references

Acknowledgements.

Work in our Institute was supported by the State of Rhineland–Palatinate, BASF SE, Bayer AG, BMBF and the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidrun Anke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anke, H., Antelo, L. (2009). Cyclic Peptides and Depsipeptides from Fungi. In: Anke, T., Weber, D. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00286-1_13

Download citation

Publish with us

Policies and ethics