Skip to main content

Role of PKB/Akt in Liver Diseases

  • Chapter
  • First Online:

Abstract

PKB/Akt is a ubiquitous and evolutionarily conserved serine/threonine kinase that is recognized as a major coordinator of various intracellular signals. It controls cell responses to extrinsic stimuli and regulates cell metabolism, proliferation, and survival. Proper tuning of PKB activity via direct or indirect mechanisms is of utmost importance for stringent regulation of PKB-dependent cellular activities. Many diseases, such as cancer or metabolic disorders, are the result of, or are associated with, aberrant activity of the PI3K/PTEN/PKB pathway. In many tumors, the PI3K/PTEN/PKB pathway is activated by upstream mutations in PI3K or PTEN or by the amplification/overexpression/mutation of PKB iso­forms themselves. Liver tumors are not the only pathological condition associated with disorders of this pathway. PKB has also been implicated in the development of hepatic insulin resistance, type 2 diabetes mellitus and, as has become evident over the past few years, in ischemia/reperfusion processes. In this chapter, the role of PKB in major physiological processes of cells is summarized and different liver disease conditions are considered by analyzing their pathophysiology from the perspective of PKB involvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jones PF, Jakubowicz T, Pitossi FJ et al (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 88(10):4171–4175

    Article  PubMed  CAS  Google Scholar 

  2. Bellacosa A, Testa JR, Staal SP et al (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254(5029):274–277

    Article  PubMed  CAS  Google Scholar 

  3. Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. J Biochem 201(2):475–481

    CAS  Google Scholar 

  4. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26(11):657–664

    Article  PubMed  CAS  Google Scholar 

  5. Brazil DP, Yangand ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233–242

    Article  PubMed  CAS  Google Scholar 

  6. Fayard E, Tintignac LA, Baudry A et al (2005) Protein kinase B/Akt at a glance. J Cell Sci 118(Pt 24):5675–5678

    Article  PubMed  CAS  Google Scholar 

  7. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  PubMed  CAS  Google Scholar 

  8. Haslam RJ, Koideand HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363(6427):309–310

    Article  PubMed  CAS  Google Scholar 

  9. Bellacosa A, Franke TF, Gonzalez-Portal ME et al (1993) Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene 8(3):745–754

    PubMed  CAS  Google Scholar 

  10. Altomare DA, Lyons GE, Mitsuuchi Y et al (1998) Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 16(18):2407–2411

    Article  PubMed  CAS  Google Scholar 

  11. Yang ZZ, Tschopp O, Hemmings-Mieszczak M et al (2003) Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278(34):32124–32131

    Article  PubMed  CAS  Google Scholar 

  12. Dahle MK, Overland G, Myhre AE et al (2004) The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun 72(10):5704–5711

    Article  PubMed  CAS  Google Scholar 

  13. Ping C, Xiaoling D, Jin Z et al (2006) Hepatic sinusoidal endothelial cells promote hepatocyte proliferation early after partial hepatectomy in rats. Arch Med Res 37(5):576–583

    Article  PubMed  CAS  Google Scholar 

  14. Ping C, Lin Z, Jiming D et al (2006) The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy. Biochem Biophys Res Commun 342(3):887–893

    Article  PubMed  CAS  Google Scholar 

  15. Wymann MP, Marone R (2005) Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 17(2):141–149

    Article  PubMed  CAS  Google Scholar 

  16. Engelman JA, Luoand J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619

    Article  PubMed  CAS  Google Scholar 

  17. Samuels Y, Diaz LA Jr, Schmidt-Kittler O et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  PubMed  CAS  Google Scholar 

  18. Alessi DR, James SR, Downes CP et al (1997) Charac­terization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  PubMed  CAS  Google Scholar 

  19. Calleja V, Alcor D, Laguerre M et al (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5(4):e95

    Article  CAS  Google Scholar 

  20. Bayascas JR, Wullschleger S, Sakamoto K et al (2008) Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol 28(10):3258–3272

    Article  PubMed  CAS  Google Scholar 

  21. Yang J, Cron P, Thompson V et al (2002) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9(6):1227–1240

    Article  PubMed  CAS  Google Scholar 

  22. Sarbassov DD, Guertin DA, Ali SM et al (2005) Phos­phorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  23. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502

    Article  PubMed  CAS  Google Scholar 

  24. Feng J, Park J, Cron P et al (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279(39):41189–41196

    Article  PubMed  CAS  Google Scholar 

  25. Bozulic L, Surucu B, Hynx D et al (2008) PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 30(2):203–213

    Article  PubMed  CAS  Google Scholar 

  26. Jensen MR, Schoepfer J, Radimerski T et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33

    Article  CAS  Google Scholar 

  27. Stuhmer T, Zollinger A, Siegmund D et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22(8):1604–12

    Article  PubMed  CAS  Google Scholar 

  28. Hostein I, Robertson D, DiStefano F et al (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61(10):4003–9

    PubMed  CAS  Google Scholar 

  29. Sato S, Fujitaand N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97(20):10832–7

    Article  PubMed  CAS  Google Scholar 

  30. Laine J, Kunstle G, Obata T et al (2000) The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 6(2):395–407

    Article  PubMed  CAS  Google Scholar 

  31. Pekarsky Y, Koval A, Hallas C et al (2000) Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci U S A 97(7):3028–33

    Article  PubMed  CAS  Google Scholar 

  32. Remy I, Michnick SW (2004) Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol 24(4):1493–504

    Article  PubMed  CAS  Google Scholar 

  33. Salmena L, Carracedoand A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414

    Article  PubMed  CAS  Google Scholar 

  34. Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113(12):1774–83

    PubMed  CAS  Google Scholar 

  35. Hu TH, Wang CC, Huang CC et al (2007) Down-regulation of tumor suppressor gene PTEN, overexpression of p53, plus high proliferating cell nuclear antigen index predict poor patient outcome of hepatocellular carcinoma after resection. Oncol Rep 18(6):1417–26

    PubMed  Google Scholar 

  36. Andjelkovic M, Jakubowicz T, Cron P et al (1996) Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) ­promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci U S A 93(12):5699–704

    Article  PubMed  CAS  Google Scholar 

  37. Ugi S, Imamura T, Maegawa H et al (2004) Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3–L1 adipocytes. Mol Cell Biol 24(19):8778–89

    Article  PubMed  CAS  Google Scholar 

  38. Gao T, Furnariand F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18(1):13–24

    Article  PubMed  CAS  Google Scholar 

  39. Nawa M, Kanekura K, Hashimoto Y et al (2008) A novel Akt/PKB-interacting protein promotes cell adhesion and inhibits familial amyotrophic lateral sclerosis-linked mutant SOD1-induced neuronal death via inhibition of PP2A-mediated dephosphorylation of Akt/PKB. Cell Signal 20(3):493–505

    PubMed  CAS  Google Scholar 

  40. Basso AD, Solit DB, Chiosis G et al (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277(42):39858–39866

    Article  PubMed  CAS  Google Scholar 

  41. Brognard J, Sierecki E, Gao T et al (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25(6):917–31

    Article  PubMed  CAS  Google Scholar 

  42. Liu F, Roth RA (1995) Grb-IR: a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function. Proc Natl Acad Sci U S A 92(22):10287–10291

    Article  PubMed  CAS  Google Scholar 

  43. Wang L, Balas B, Christ-Roberts CY et al (2007) Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol 27(18):6497–505

    Article  PubMed  CAS  Google Scholar 

  44. Wick KR, Werner ED, Langlais P et al (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278(10):8460–7

    Article  PubMed  CAS  Google Scholar 

  45. Jahn T, Seipel P, Urschel S et al (2002) Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol 22(4):979–91

    Article  PubMed  CAS  Google Scholar 

  46. Shiura H, Miyoshi N, Konishi A et al (2005) Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem Biophys Res Commun 329(3):909–16

    Article  PubMed  CAS  Google Scholar 

  47. Maira SM, Galetic I, Brazil DP et al (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294(5541):374–80

    Article  PubMed  CAS  Google Scholar 

  48. Paramio JM, Segrelles C, Ruiz S et al (2001) Inhibition of protein kinase B (PKB) and PKC{zeta} mediates keratin K10-induced cell cycle arrest. Mol Cell Biol 21(21):7449–7459

    Article  PubMed  CAS  Google Scholar 

  49. Tokuda E, Fujita N, Oh-hara T et al (2007) Casein kinase 2-interacting protein-1, a novel Akt pleckstrin homology domain-interacting protein, down-regulates PI3K/Akt signaling and suppresses tumor growth in vivo. Cancer Res 67(20):9666–76

    Article  PubMed  CAS  Google Scholar 

  50. Du K, Herzig S, Kulkarni RN et al (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–7

    Article  PubMed  CAS  Google Scholar 

  51. Okamoto H, Latres E, Liu R et al (2007) Genetic deletion of Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic insulin signaling and glucose homeostasis. Diabetes 56(5):1350–1356

    Article  PubMed  CAS  Google Scholar 

  52. Gulati P, Thomas G (2007) Nutrient sensing in the mTOR/S6K1 signalling pathway. Biochem Soc Trans 35(Pt 2):236–8

    PubMed  CAS  Google Scholar 

  53. Pende M, Kozma SC, Jaquet M et al (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408(6815):994–7

    Article  PubMed  CAS  Google Scholar 

  54. Constantinou C, Clemens MJ (2005) Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Oncogene 24(30):4839–50

    Article  PubMed  CAS  Google Scholar 

  55. Fingar DC, Richardson CJ, Tee AR et al (2004) mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24(1):200–16

    Article  PubMed  CAS  Google Scholar 

  56. Hara K, Yonezawa K, Kozlowski MT et al (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272(42):26457–63

    Article  PubMed  CAS  Google Scholar 

  57. Wang L, Harrisand TE, Lawrence JC Jr (2008) Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 283(23):15619–27

    Article  PubMed  CAS  Google Scholar 

  58. Thedieck K, Polak P, Kim ML et al (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2(11):e1217

    Article  CAS  Google Scholar 

  59. Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–15

    Article  PubMed  CAS  Google Scholar 

  60. Fonseca BD, Smith EM, Lee VH et al (2007) PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 282(34):24514–24

    Article  PubMed  CAS  Google Scholar 

  61. Oshiro N, Takahashi R, Yoshino K et al (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282(28):20329–39

    Article  PubMed  CAS  Google Scholar 

  62. Vander Haar E, Lee SI, Bandhakavi S et al (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9(3):316–23

    Article  PubMed  CAS  Google Scholar 

  63. Condorelli G, Drusco A, Stassi G et al (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A 99(19):12333–8

    Article  PubMed  CAS  Google Scholar 

  64. Bernal-Mizrachi E, Wen W, Stahlhut S et al (2001) Islet beta cell expression of constitutively active Akt1/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest 108(11):1631–8

    PubMed  CAS  Google Scholar 

  65. Trumper K, Trumper A, Trusheim H et al (2000) Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann N Y Acad Sci 921:242–50

    Article  PubMed  CAS  Google Scholar 

  66. Graff JR, Konicek BW, McNulty AM et al (2000) Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 275(32):24500–24505

    Article  PubMed  CAS  Google Scholar 

  67. Ono H, Shimano H, Katagiri H et al (2003) Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52(12):2905–2913

    Article  PubMed  CAS  Google Scholar 

  68. Yang ZZ, Tschopp O, Di-Poi N et al (2005) Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 25(23):10407–18

    Article  PubMed  CAS  Google Scholar 

  69. Cho H, Thorvaldsen JL, Chu Q et al (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276(42):38349–52

    Article  PubMed  CAS  Google Scholar 

  70. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–41

    Article  PubMed  CAS  Google Scholar 

  71. Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–21

    Article  PubMed  CAS  Google Scholar 

  72. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–68

    Article  PubMed  CAS  Google Scholar 

  73. Basu S, Totty NF, Irwin MS et al (2003) Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14–3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11(1):11–23

    Article  PubMed  CAS  Google Scholar 

  74. Horvath MM, Wang X, Resnick MA et al (2007) Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. PLoS Genet 3(7):e127

    Article  CAS  Google Scholar 

  75. Feng J, Tamaskovic R, Yang Z et al (2004) Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279(34):35510–7

    Article  PubMed  CAS  Google Scholar 

  76. Dummler B, Tschopp O, Hynx D et al (2006) Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol 26(21):8042–51

    Article  PubMed  CAS  Google Scholar 

  77. Cho H, Mu J, Kim JK et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–31

    Article  PubMed  CAS  Google Scholar 

  78. Garofalo RS, Orena SJ, Rafidi K et al (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 112(2):197–208

    PubMed  CAS  Google Scholar 

  79. Majewski N, Nogueira V, Bhaskar P et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–30

    Article  PubMed  CAS  Google Scholar 

  80. Cross DAE, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789

    Article  PubMed  CAS  Google Scholar 

  81. McManus EJ, Sakamoto K, Armit LJ et al (2005) Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. Embo J 24(8):1571–83

    Article  PubMed  CAS  Google Scholar 

  82. MacAulay K, Doble BW, Patel S et al (2007) Glycogen synthase kinase 3[alpha]-specific regulation of murine hepatic glycogen metabolism. Cell Metab 6(4):329–337

    Article  PubMed  CAS  Google Scholar 

  83. Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–9

    Article  PubMed  CAS  Google Scholar 

  84. Taniguchi CM, Kondo T, Sajan M et al (2006) Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKC[lambda]/[zeta]. Cell Metab 3(5):343–353

    Article  PubMed  CAS  Google Scholar 

  85. Berwick DC, Hers I, Heesom KJ et al (2002) The Identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem 277(37):33895–33900

    Article  PubMed  CAS  Google Scholar 

  86. Bauer DE, Hatzivassiliou G, Zhao F et al (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24(41):6314–22

    Article  PubMed  CAS  Google Scholar 

  87. Yahagi N, Shimano H, Hasegawa K et al (2005) Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer 41(9):1316–1322

    Article  PubMed  CAS  Google Scholar 

  88. Gross DN, van den Heuveland AP, Birnbaum MJ (2008) The role of FoxO in the regulation of metabolism. Oncogene 27(16):2320–2336

    Google Scholar 

  89. Zhang W, Patil S, Chauhan B et al (2006) FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281(15):10105–17

    Article  PubMed  CAS  Google Scholar 

  90. Matsumoto M, Pocai A, Rossetti L et al (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6(3):208–16

    Article  PubMed  CAS  Google Scholar 

  91. Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27(7):728–35

    PubMed  CAS  Google Scholar 

  92. Li X, Monks B, Ge Q et al (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447(7147):1012–6

    Article  PubMed  CAS  Google Scholar 

  93. Zheng X, Yang Z, Yue Z et al (2007) FOXO and insulin signaling regulate sensitivity of the circadian clock to ­oxidative stress. Proc Natl Acad Sci U S A 104(40):15899–904

    Article  PubMed  Google Scholar 

  94. Clavien PA, Petrowsky H, DeOliveira ML et al (2007) Strategies for safer liver surgery and partial liver transplantation. N Engl J Med 356(15):1545–59

    Article  PubMed  Google Scholar 

  95. Lesurtel M, Graf R, Aleil B et al (2006) Platelet-derived serotonin mediates liver regeneration. Science 312(5770): 104–7

    Article  PubMed  CAS  Google Scholar 

  96. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300

    Article  PubMed  CAS  Google Scholar 

  97. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–47

    Article  PubMed  CAS  Google Scholar 

  98. Hong F, Nguyen VA, Shen X et al (2000) Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration. Biochem Biophys Res Commun 279(3):974–9

    Article  PubMed  CAS  Google Scholar 

  99. Mullany LK, Nelsen CJ, Hanse EA et al (2007)Akt-mediated liver growth promotes induction of cyclin E through a novel translational mechanism and a p21-mediated cell cycle arrest. J Biol Chem 282(29): 21244–52

    Article  PubMed  CAS  Google Scholar 

  100. Haga S, Ogawa W, Inoue H et al (2005) Compensatory recovery of liver mass by Akt-mediated hepatocellular hyper­trophy in liver-specific STAT3-deficient mice.J Hepatol 43(5):799–807

    Article  PubMed  CAS  Google Scholar 

  101. Murata S, Matsuo R, Ikeda O et al (2008) Platelets promote liver regeneration under conditions of Kupffer celldepletion after hepatectomy in mice. World J Surg 32(6):1088–96

    Article  PubMed  Google Scholar 

  102. Jackson LN, Larson SD, Silva SR et al (2008) PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 294(6):G1401–10

    Article  CAS  Google Scholar 

  103. Angulo P (2007) GI epidemiology: nonalcoholic fatty liver disease. Aliment Pharmacol Therap 25(8):883–889

    Article  CAS  Google Scholar 

  104. Rector RS, Thyfault JP, Wei Y et al (2008) Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol 14(2):185–92

    Article  PubMed  CAS  Google Scholar 

  105. Piro S, Spadaro L, Russello M et al (2008) Molecular ­determinants of insulin resistance, cell apoptosis and lipid ­accumulation in non-alcoholic steatohepatitis. Nutr Metab Cardiovasc Dis 18(8):545–552

    Article  PubMed  CAS  Google Scholar 

  106. Samuel VT, Liu Z-X, Qu X et al (2004) Mechanism of Hepatic Insulin Resistance in Non-alcoholic Fatty Liver Disease. J Biol Chem 279(31):32345–32353

    Article  PubMed  CAS  Google Scholar 

  107. Mendez-Sanchez N, Arrese M, Zamora-Valdes D et al (2007) Current concepts in the pathogenesis of nonalcoholic fatty liver disease. Liver Int 27(4):423–33

    Article  PubMed  CAS  Google Scholar 

  108. Lupi R, Del Guerra S, Fierabracci V et al (2002) Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 51(Suppl 1):S134–7

    Article  Google Scholar 

  109. Joseph JW, Koshkin V, Saleh MC et al (2004) Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem 279(49):51049–56

    Article  PubMed  CAS  Google Scholar 

  110. Dyntar D, Eppenberger-Eberhardt M, Maedler K et al (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50(9):2105–2113

    Article  PubMed  CAS  Google Scholar 

  111. Li Z, Berk M, McIntyre TM et al (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47(5):1495–503

    Article  PubMed  CAS  Google Scholar 

  112. Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31(2):53–9

    PubMed  CAS  Google Scholar 

  113. Leclercq IA, Da Silva Morais A, Schroyen B et al (2007) Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol 47(1):142–56

    Article  PubMed  CAS  Google Scholar 

  114. Delibegovic M, Bence KK, Mody N et al (2007) Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol 27(21):7727–34

    Article  PubMed  CAS  Google Scholar 

  115. Xue B, Kim YB, Lee A et al (2007) Protein-tyrosine phosphatase 1B deficiency reduces insulin resistance and the diabetic phenotype in mice with polygenic insulin resistance. J Biol Chem 282(33):23829–40

    Article  PubMed  CAS  Google Scholar 

  116. Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101(7):2082–7

    Article  PubMed  CAS  Google Scholar 

  117. Vinciguerra M, Sgroi A, Veyrat-Durebex C et al (2009) Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49:1176–1184

    Article  PubMed  CAS  Google Scholar 

  118. Wang L, Wang WL, Zhang Y et al (2007) Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res 37(5):389–396

    Article  PubMed  CAS  Google Scholar 

  119. Lee SR, Yang KS, Kwon J et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–42

    Article  PubMed  CAS  Google Scholar 

  120. Lee JW, Soung YH, Kim SY et al (2004) PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24(8):1477–1480

    Article  CAS  Google Scholar 

  121. Tanaka Y, Kanai F, Tada M et al (2006) Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene 25(20):2950–2

    Article  PubMed  CAS  Google Scholar 

  122. Villanueva A, Chiang DY, Newell P et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastro­enterology 135(6): 1972–1983, 1983 e1–e11

    Google Scholar 

  123. Nakanishi K, Sakamoto M, Yamasaki S et al (2005) Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer 103(2):307–12

    Article  PubMed  CAS  Google Scholar 

  124. Tsang TY, Tang WY, Tsang WP et al (2008) Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis 13(9):1135–47

    Article  PubMed  CAS  Google Scholar 

  125. Cotler S, Hay N, Xie H et al (2008) Immunohistochemical expression of components of the Akt-mTORC1 pathway is associated with hepatocellular carcinoma in patients with chronic liver disease. Dig Dis Sci 53(3):844–849

    Article  PubMed  CAS  Google Scholar 

  126. Baba HA, Wohlschlaeger J, Cicinnati VR et al (2009) Phosphorylation of p70S6 kinase predicts overall survival in patients with clear margin-resected hepatocellular carcinoma. Liver Int 29:399–405

    Article  PubMed  CAS  Google Scholar 

  127. Choudhari SR, Khan MA, Harris G et al (2007) Deactivation of Akt and STAT3 signaling promotes apoptosis, inhibits proliferation, and enhances the sensitivity of hepatocellular carcinoma cells to an anticancer agent Atiprimod. Mol Cancer Ther 6(1):112–121

    Article  PubMed  CAS  Google Scholar 

  128. Porstmann T, Griffiths B, Chung YL et al (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43):6465–81

    PubMed  CAS  Google Scholar 

  129. Yang YA, Morin PJ, Han WF et al (2003) Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 282(2):132–137

    Article  PubMed  CAS  Google Scholar 

  130. Pflug BR, Pecher SM, Brink AW et al (2003) Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model. Prostate 57(3):245–54

    Article  PubMed  CAS  Google Scholar 

  131. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16(3):202–208

    Article  PubMed  CAS  Google Scholar 

  132. Furuta E, Pai SK, Zhan R et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68(4):1003–11

    Article  PubMed  CAS  Google Scholar 

  133. Rahman MA, Kyriazanos ID, Ono T et al (2002) Impact of PTEN expression on the outcome of hepatitis C virus-­positive cirrhotic hepatocellular carcinoma patients: possible relationship with COX II and inducible nitric oxide synthase. Int J Cancer 100(2):152–7

    Article  PubMed  CAS  Google Scholar 

  134. Street A, Macdonald A, Crowder K et al (2004) The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem 279(13):12232–12241

    Article  PubMed  CAS  Google Scholar 

  135. Chung YL, Sheuand ML, Yen SH (2003) Hepatitis C virus NS5A as a potential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in hepatocellular carcinoma. Int J Cancer 107(1):65–73

    Article  PubMed  CAS  Google Scholar 

  136. Kim KH, Shin H-J, Kim K et al (2007) Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPAR[gamma]. Gastroenterology 132(5):1955–1967

    Article  PubMed  CAS  Google Scholar 

  137. Choi YH, Kim HI, Seong J et al (2004) Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor [gamma] through protein-protein interaction. FEBS Lett 557(1–3):73–80

    Article  PubMed  CAS  Google Scholar 

  138. Waris G, Felmlee DJ, Negro F et al (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory ­element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81(15):8122–30

    Article  PubMed  CAS  Google Scholar 

  139. Aytug S, Reich D, Sapiro LE et al (2003) Impaired IRS-1/PI3-kinase signaling in patients with HCV: a mechanism for increased prevalence of type 2 diabetes. Hepatology 38(6):1384–92

    PubMed  CAS  Google Scholar 

  140. Bernsmeier C, Duong FH, Christen V et al (2008) Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J Hepatol 49(3):429–40

    Article  PubMed  CAS  Google Scholar 

  141. Boyault S, Rickman DS, de Reynies A et al (2007) Tran­scriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45(1): 42–52

    Article  PubMed  CAS  Google Scholar 

  142. Chung T-W, Lee Y-C, Ko J-H et al (2003) Hepatitis B virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells. Cancer Res 63(13):3453–3458

    PubMed  CAS  Google Scholar 

  143. Kang-Park S, Im JH, Lee JH et al (2006) PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res 122(1–2):53–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Arnaud Parcellier, Lana Bozulic, Alexander Hergovich, and Patrick King for their ­critical reading of this manuscript. EZ is the recipient of a Swiss Bridge fellowship. OT is supported by the Gebert Rüf Foundation (GRS 027/06) and Amélie Waring Foundation. The Friedrich Miescher Institute is part of the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Hemmings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhuravleva, E., Tschopp, O., Hemmings, B.A. (2010). Role of PKB/Akt in Liver Diseases. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics