Skip to main content

The Experimental Arche Continued: Von Foerster on Observing Systems

  • Chapter
  • First Online:
Organizations

Abstract

In the previous chapter we used Ashby’s cybernetic theory to discuss the “experimental arche” of organizations. This arche referred to a continuous and risky process of control, design and operational regulation with respect to organizational transformation processes. At the heart of our discussion of the experimental arche was Ashby’s regulatory logic, stating that, in order to regulate a particular concrete system, one has to: Select essential variables and desired values Identify parameters, disturbing the essential variables Design an infrastructure (a “mechanism”) by means of which: Disturbances are attenuated The system’s transformation processes can be realized Regulatory potential (regulatory parameters) becomes available And, given 1, 2, and 3: select values of regulatory parameters (= select regulatory actions) in the face of actual disturbances.

Moreover, in this Ashby-based notion of regulation, one needs a model of the behavior of the concrete system: a transformation. According to Ashby (1958), a good (conditional, single-valued) transformation relates the selected variables and parameters in such a way that predictions can be made about the behavior of the concrete system. To arrive at such a transformation, the black-box method was introduced – a method enabling a regulator to derive a transformation based only on the values of the variables and parameters that are chosen to describe the concrete system that should be regulated. Ashby’s black box method seems to suggest that we can “objectively” select variables and parameters, and derive a transformation connecting them based on trial and error, without, as Ashby puts it, “reference to prior knowledge”. If this is what regulating systems is about, one might say that it does not contain much risk. It is “just” a matter of selecting variables/parameters; observation and deduction. The risk attached to it may have to do with the mistakes we make in selecting variables/parameters or in deducing a conditional transformation from empirical observations; or it may have to do with time-constraints we face while regulating; or with the probabilities appearing in a transformation and governing the behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is easy and straightforward with a limited number of input and output states. It quickly becomes tiresome, however, if the number of states increases. If the number of input-states is denoted by #X and the number of output-states by #Y, the total number of possible trivial machines is #Y#X. In the example, there are 4 possible trivial machines and the observer needs at most 3 trials to determine the right one. If the number of states only moderately increases, the number of possible machines increases rapidly (cf. von Foerster 1970).

  2. 2.

    Beware: this table is different from the Ashby-based regulation-tables, for both the values of output states and the internal parameter co-determining the output are given in the table.

  3. 3.

    Although most of the non-trivial machines we have to deal with have a large number of input and output states, Von Foerster’s argument even holds for non-trivial machines with few input-states and output-states (as the one from our example, which only has four input and four output states).

  4. 4.

    To see the resemblance, it is important to note that what von Foerster treats as input for the operation is called “operand” by Ashby, and von Foerster’s output is Ashby’s transform.

  5. 5.

    From standard algebra, one can learn that, for any function f, if a and λ exist such that f(a) = λf(a), then a is called the eigenvector and λ the eigenvalue. In von Foerster’s formalism, λ seems to be set to 1, and a is called the eigenvalue (e.g., Lipschitz 1987).

  6. 6.

    In many formal representations of nerve-cells, such internal states are represented by threshold-functions.

  7. 7.

    Note that only the index in Pt refers to a moment in time. The other indices indicate that both the eigenvalue and the motor output are based on Pt.

  8. 8.

    “Ich habe meine Vermutungen über molekulare Rechenprozesse nur vorgelegt, um anzudeuten, dass es Perspektive gibt, die auf eine Mitwirkung der Moleküle an dem großen Drama des bewussten Denkens hindeuten […]” (von Foerster 1991, p. 93).

  9. 9.

    “die Theorie des selbstreferentiellen, in sich geschlossen Erkennens erst jetzt die Form erwinnt in der […] die Unzugänglichkeit der Außenwelt ”an sich“[…] zum Ausdruck gebracht [werden kann]”.

  10. 10.

    Of course, a large number of methods for divergence of ideas (e.g. tools for fostering creativity) exist (and are) used for supporting problem-solving. The main focus here is on more traditional decision aids e.g. system dynamics of multi-criteria analysis, that have a long tradition as management decision-aids.

  11. 11.

    This is congruent with Aristotle’s ideas on responsibility – cf. Hughes (2001).

References

  • Ackoff, R. L. (1978). The art of problem solving. New York: Wiley.

    Google Scholar 

  • Ashby, W. R. (1958). An Introduction to cybernetics. London: Chapman & Hall.

    Google Scholar 

  • Cybernetics & Human Knowing 2003 10(3–4). Special issue on von Foerster

    Google Scholar 

  • Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over Machine. Oxford: Basil Blackwell.

    Google Scholar 

  • Glanville, R. (2003). Machines of wonder and elephants that float through air. Cybernetics and Human Knowing, 10(3,4), 91–106.

    Google Scholar 

  • Hogart, R. M. (1994). Judgment and choice. Chichester: Wiley.

    Google Scholar 

  • Hughes, G. J. (2001). Aristotle on ethics. London: Routledge.

    Google Scholar 

  • Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgement under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lindsay, P. H., & Norman, D. A. (1977). Human information processing. New York: Academic Press.

    Google Scholar 

  • Lipschitz, S. (1987). Linear Algebra. New York: McGraw-Hill.

    Google Scholar 

  • Luhmann, N. (1984). Soziale systeme. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Luhmann, N. (1990). Das erkenntnisprogramm des Konstruktivismus und der unbekannt bleibende Realität. In N. Luhmann (Ed.), Soziologische Aufklärung (5) (pp. 31–58). Opladen: Westdeutscher Verlag.

    Google Scholar 

  • March, J. G. (1978). Bounded rationality, ambiguity, and the engineering of choice. Reprinted In D. E. Bell, H. Raiffa & A. Tversky (Eds.). (1988) Decision Making (pp. 33–57). Cambridge: Cambridge University Press.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Dordrecht: Reidel.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1984). The Tree of knowledge. Boston: Shambhala.

    Google Scholar 

  • Nisbett, R. E., & Ross, L. (1980). Human inferences: Strategies and shortcomings of social judgment. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Pask, G. (1992). Different kinds of cybernetics. In G. van de Vijver (Ed.), New perspectives on cybernetics (pp. 11–31). Deventer: Kluwer.

    Google Scholar 

  • Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169.

    Article  Google Scholar 

  • Rosenhead, J. (ed). (1989). Rational analysis for a problematic world. Chichester: Wiley.

    Google Scholar 

  • Segal, L. (1986). The dream of reality. New York: Norton.

    Google Scholar 

  • Schütz, A., & Lückmann, T. (1994). Strukturen der Lebenswelt (I). Franktfurt am Main: Suhrkamp.

    Google Scholar 

  • Thompson, R. F. (1976). Introduction to physiological psychology. New York: Harper & Row.

    Google Scholar 

  • Varela, F. J. (1984). Two principles of self-organization. In H. Ulrich & G. J. B. Probst (Eds.), Self-organization and management of social systems (pp. 2–24). Berlin: Springer.

    Google Scholar 

  • Varela, F. J. (1988). Cognitive science: A cartography of current ideas. Cambridge, MA: MIT Press.

    Google Scholar 

  • Varela, F. J., Thompson, E., & Rosch, E. (1993). The embodied mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • von Foerster, H. (1970). Molecular ethology: An immodest proposal for semantic clarification. In G. Ungar (Ed.), Molecular mechanisms in memory and learning (pp. 213–248). New York: Plenum.

    Google Scholar 

  • von Foerster, H. (1988). KybernEthik. Berlin: Merve Verlag.

    Google Scholar 

  • von Foerster, H. (1981). Observing systems. Seaside, CA: Intersystems Publications.

    Google Scholar 

  • von Foerster, H. (1984). Principles of self-organization – in a socio-managerial context. In H. Ulrich & G. J. B. Probst (Eds.), Self-organization and management of social systems (pp. 2–24). Berlin: Springer.

    Google Scholar 

  • von Foerster, H. (1991). Was ist Gedächtnis, dass es Rückschau und Vorschau ermöglicht? In S. J. Schmidt (Ed.), Gedächtnis (pp. 56–95). Frankfurt am Mian: Suhrkamp.

    Google Scholar 

  • von Foerster, H. (1992). Entdecken oder Erfinden: Wie lässt sich verstehen? In H. Guman & H. Maier (Eds.), Einführung in den Konstruktivismus (pp. 41–88). München: Piper.

    Google Scholar 

  • von Foerster, H. (2002). Understanding understanding. Heidelberg: Springer.

    Google Scholar 

  • von Foerster, H., & Poerksen, B. (2002). Understanding systems. New York: Kluwer.

    Google Scholar 

  • Winograd, T., & Flores, F. (1986). Understanding computers and cognition. Norwoord, NJ: Ablex.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Achterbergh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Achterbergh, J., Vriens, D. (2009). The Experimental Arche Continued: Von Foerster on Observing Systems. In: Organizations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00110-9_3

Download citation

Publish with us

Policies and ethics