Skip to main content

Electrospinning

  • Chapter
  • 3331 Accesses

Zusammenfassung

Die weite Palette von Technologien, welche sich mit Strukturen und Prozessen auf der Nanometerskala befassen, wird summarisch als Nanotechnologie bezeichnet. Diese wird, wegen ihres Potentials zur grundlegenden Veränderung ganzer Forschungsfelder, als Schlüsseltechnologie angesehen, welche in naher Zukunft nicht nur die technologische Entwicklung beeinflussen, sondern auch maßgebliche ökonomische, ökologische und soziale Fortschritte mit sich bringen wird. Charakteristisch beim Übergang auf die Nanometerskala ist, neben der zunehmenden Dominanz quantenphysikalischer Effekte, dass Oberflächen- bzw. Grenzflächeneigenschaften gegenüber den Volumeneigenschaften des Materials eine immer größere Rolle spielen [1]. Nanostrukturen können in verschiedene Kategorien gegliedert werden. Basisstrukturen bilden sogenannte Nanopartikel, welche in allen drei Raumrichtungen kleiner als 100 nm sind (z. B. Nanokristalle, Cluster, oder Moleküle) und somit als nulldimensionale Nanoelemente angesehen werden können. Desweiteren gibt es linienförmige, gleichsam eindimensionale Strukturen (z. B. Nanodrähte, Nanoröhren und Nanofasern), sowie Schichtstrukturen, welche als zweidimensional betrachtet werden können [1, 2]. Für die Herstellung von Nanofasern gibt es viele unterschiedliche Verfahren, eines der vielseitigsten und variabelsten stellt dabei die Methode des Electrospinnings dar. Das bereits in den 30er Jahren durch Antonin Formhals patentierte Verfahren [3–8] geriet lange Zeit in Vergessenheit. Erst Mitte der 90er Jahre begannen Forscher, das große Potential dieses Prozesses für die Herstellung von Nanofasern zu realisieren [9]. Mittels Electrospinning können Fasern aus Polymeren, Kompositmaterialien, Halbleitern sowie Keramiken hergestellt werden. Da als meist verwendetes Material Polymere eingesetzt werden [10], beziehen sich die folgenden Abschnitte auf diesen Werkstoff.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Paschen, H., et al., Nanotechnologie – Forschung, Entwicklung, Anwendung. 2004, Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  2. Ramakrishna, S., et al., An Introduction to Electrospinning and Nanofibers. 2005, Singapore: World Scientific Publishing Co. Pte. Ltd.

    Google Scholar 

  3. Formhals, A., Method and apparatus for spinning. 1939b: US Patent Specification 2160962.

    Google Scholar 

  4. Formhals, A., Process and apparatus for preparing artificial threads. 1934: US Patent Specification 1975504.

    Google Scholar 

  5. Formhals, A., Artificial fiber construction. 1938a: US Patent Specification 2109333.

    Google Scholar 

  6. Formhals, A., Method and apparatus for the production of fibers. 1938b: US Patent Specification 2116942.

    Google Scholar 

  7. Formhals, A., Method an apparatus for the production of fibers. 1938c: US Patent Specification 2123992.

    Google Scholar 

  8. Formhals, A., Method and production for the production artificial fibers. 1939a: US Patent Specification 2158416.

    Google Scholar 

  9. Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995. 35: p. 151ff.

    Article  Google Scholar 

  10. Teo, W.-E. and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006. 17: p. R89–R106.

    Article  Google Scholar 

  11. Zhao, Z., et al., Preparation and Properties of Electrospun Poly(vinylidene flouride) Membranes. Journal of Applied Polymer Science, 2005. 97(2): p. 466–479.

    Article  Google Scholar 

  12. Han, S.O., et al., Ultrafine porous fibers electrospun from cellulose triacetate. Materials Letters, 2005(2998–3001).

    Google Scholar 

  13. Buchko, C.J., et al., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40: p. 7397–7407.

    Article  Google Scholar 

  14. Megelski, S., et al., Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 2002. 35: p. 8456–8466.

    Article  Google Scholar 

  15. Lee, J.S., et al., Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 2004. 93: p. 1638–1646.

    Article  Google Scholar 

  16. Pawlowski, K.J., et al., Electrospinning of a micro-air vehicle wing skin. Polymer, 2003. 34: p. 1309–1314.

    Article  Google Scholar 

  17. Zhong, X.H., et al., Structure and process relationship of Electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43: p. 4403–4412.

    Article  Google Scholar 

  18. Deitzel, J.M., et al., The effect of processing variables on the morphology of electrospun nanofibers an textiles. Polymer, 2001. 42: p. 261–272.

    Article  Google Scholar 

  19. Weiwei, Z., et al., Experimental Study on ralationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science, 2005: p. 704–709.

    Google Scholar 

  20. Rutledge, G.C., et al., Electrostatic Spinning and properties of ultrafine Fibers. National Textile Center, 2000 Annual Report, 2000: p. 1–10.

    Google Scholar 

  21. Zhao, S.L., et al., Electrospinning of Ethyl-Cyanoethyl Cellulose/Tetrahydrofuran Solutions. Journal of Applied Polymer Science, 2004. 91: p. 242–246.

    Article  Google Scholar 

  22. Teo, W.-E. and S. Ramakrishna, Electrospun fibre bundle made of aligned nanofibers over two fixed points. Nanotechnology, 2005. 16: p. 1878 ff.

    Article  Google Scholar 

  23. Xu, C.Y., et al., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25: p. 877 ff.

    Article  Google Scholar 

  24. Matthews, J.A., et al., Electrospinning of collagen nanofibers. Biomacromolecules, 2002. 2: p. 232 ff.

    Article  MathSciNet  Google Scholar 

  25. Kim, K.W., et al., The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephtalate) nonwovens. Fiber Polymers, 2004. 5: p. 122 ff.


    Article  Google Scholar 

  26. Chew, S.Y., et al., Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005. 6: p. 2017 ff.

    Article  Google Scholar 

  27. He, J.-H., Y.-Q. Wan, and J.-Y. Yu, Application of Vibration Technology to Polymer Electrospinning. International Journal of Nonlinear Sciences an Numerical Simulation, 2004. 5(3): 
p. 253–262.

    Google Scholar 

  28. Khil, M.S., et al., Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research B, 2005. 72: p. 117 ff.

    Article  Google Scholar 

  29. Smit, E., U. Buttner, and R.D. Sanderson, Continious yarns from electrospun fibers. Polymer Communications, 2005. 46: p. 2419 ff.

    Article  Google Scholar 

  30. Yarin, A.L. and E. Zussman, Upward needleless electrospinning of multiple nanofibers. Polymer, 2004. 45(2977 ff.).

    Article  Google Scholar 

  31. Wang, M., et al., Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. Macromolecules, 2006. 39: p. 1102 ff.

    Article  Google Scholar 

  32. Lin, T., H. Wang, and X. Wang, Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Advanced Materials, 2005. 17: p. 2699 ff.

    Article  MathSciNet  Google Scholar 

  33. Fong, H., et al., Beaded nanofibers during electrospinning. Polymer, 1999. 40: p. 4585–4592.

    Article  Google Scholar 

  34. Subbiah, T., et al., Electrospinning of Nanofibers. Journal of Applied Polymer Science, 2005. 96(2): p. 557–569.

    Article  Google Scholar 

  35. Hsieh, Y.-L., S.B. Warner, and H. Schreuder-Gibson, Nano-Porous Ultra-High Surface Area Fibers. National Textile Center Final Report, 2004.

    Google Scholar 

  36. McCann, J.T., M. Maruez, and Y. Xia, Highly Porous Fibers by Electrospinning into a cryogenic Liquid. Journal of the American Chemical Society, 2006. 128: p. 1436–1437.

    Article  Google Scholar 

  37. Kim, C.H., et al., Effect of Collector Temperature on the Porous Structure of Electrospun Fibers. Molecular Research, 2006. 14(1): p. 59–65.

    Google Scholar 

  38. Bognitzki, M., et al., Preparation of fibers with nanoscaled morphologies: Electrospinning of Polymer blends. Polymer Engineering and Science, 2001. 41(6): p. 982–989.

    Article  Google Scholar 

  39. Bognitzki, M., et al., Nanostructured Fibers via Electrospinning. Advanced Materials, 2001. 13: p. 70–72.

    Article  Google Scholar 

  40. Koombhongse, S., et al., Flat Polymer Ribbons and Other Shapes by Electrospinning. Journal of Polymer Science Part B: Polymer Physics, 2001. 39: p. 2598–2606.

    Article  Google Scholar 

  41. Leong, K.W. and R. Langer, Polymeric controlled drug delivery. Advanced Drug Delivery Reviews, 1987. 1: p. 199–233.

    Article  Google Scholar 

  42. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63: p. 2223–2253.

    Article  Google Scholar 

  43. Zeng, J., et al., Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release, 2003. 92: p. 227–231.

    Article  Google Scholar 

  44. Crowder, T.M., et al., Fundamental Effects of Particle Morphology on Lung Delivery: Predictions of Stokes’ Law and the Particular Relevance to Dry Powder Inhaler Formulation and Development. Pharmaceutical Research, 2002. 19: p. 239–245.

    Article  Google Scholar 

  45. Bissell, M.J. and M.H. Barcellos-Hoff, The influence of extracellular matrix on gene expression: is structure the message? Journal of Cell Science Supplement, 1987. 8: p. 327 ff.

    Google Scholar 

  46. Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue Engineering, 2006. 12(5): p. 1197–1211.

    Article  Google Scholar 

  47. Murugan, R. and S. Ramakrishna, Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies. Tissue Engineering, 2006. 12(3): p. 435–447.

    Article  Google Scholar 

  48. Xu, C.Y., et al., Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Engineering, 2004. 10: p. 1160 ff.

    Google Scholar 

  49. Kwon, I.K. and T. Matsuda, Co-electrospun nanofiber fabrics of poly(L-lactide-co-e-caprolactone) with type I collagen or heparin. Biomacromolecules, 2005. 6: p. 2096–2105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laar, N., Köppl, S., Wintermantel, E. (2009). Electrospinning. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_19

Download citation

Publish with us

Policies and ethics