Skip to main content

Measuring Stress in Antarctic Seals

  • Chapter
  • First Online:
  • 880 Accesses

Abstract

The term stress is used widely to describe the possible effects of external factors (stressors) on animals at both the individual and population levels. An important question in biology is how animals cope with their environment (Romero and Reed 2005). Assessing this coping mechanism can be done either behaviourally or physiologically or by a combination of both. Stressors include those aspects of everyday life such as energetic and physical demands as well as the more unpredictable events such as habitat loss, predation risk, loss of social status and impacts of human activities.

Antarctic animals live in weather conditions that would be considered extreme by most humans and are subject to changes in prey sources and, more recently, to localised disturbance by tourist activities. The Protocol on Environmental Protection to the Antarctic Treaty has highlighted the need to understand the impacts of human activities in Antarctica. An understanding of how Antarctic species cope with their environment is needed if we are to understand how human activities are impacting different species. In the past, human impact studies focused on changes in species’ demographic patterns such as breeding success (e.g. Frederick and Collopy 1989; Lord et al. 2001), but more recently attention has been given to the physiological changes that occur in species which are subject to human disturbances (e.g. Romero and Wikelski 2002; Müllner et al. 2004; Walker et al. 2006). Behaviour, heart rate and physiological responses are modulated depending on the type of stressor (Nephew et al. 2003), and so in order to monitor human disturbances in Antarctica, both behavioural and physiological responses should be measured (Walker et al. 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brown JL, Wemmer CM, Lehnhardt J (1995) Urinary cortisol analysis for monitoring adrenal activity in elephants. Zoo Biol 14:533–542

    Article  CAS  Google Scholar 

  • Chattoraj SC, Watts NB (1987) Endocrinology. In: Tietz NW (eds) Fundamentals of clinical chemistry. Saunders, Philadelphia, USA, pp 533–613

    Google Scholar 

  • Constable S, Parslow A, Dutton G, Rogers T, Hogg C (2006) Urinary cortisol sampling: a non-invasive technique for examining cortisol concentrations in the Weddell seal, Leptonychotes weddellii. Zoo Biol 25(2):137–144

    Article  CAS  Google Scholar 

  • Czekala N, Sicotte P (2000) Reproductive monitoring of free-ranging female mountain gorillas by urinary hormone analysis. Am J Primatol 51:209–215

    Article  PubMed  CAS  Google Scholar 

  • Dorgan JF, Fears TR, McMahon RP, Friedman LA, Patterson BH, Greenhut SF (2002) Measurement of steroid hormones in serum: comparison of radioimmunoassay and mass spectrometry. Steroids 67:151–158

    Article  PubMed  CAS  Google Scholar 

  • Feldman EC, Tyrell JB, Bohannon NV (1978) The synthetic ACTH stimulation test and measuement of endogenous plasma ACTH levels: useful diagnostic indicators for adrenal disease in dogs. J Am Animal Hos Assoc 14:524–531

    CAS  Google Scholar 

  • Free M, Tillson S (1973) Secretion rate of testicular steroid in conscious and halothane-anesthetized rat. J Endocrinol 93:874–879

    Article  CAS  Google Scholar 

  • Frederick PC, Collopy MW (1989) Researcher disturbance in colonies of wading birds: effects of frequency of visit and egg-marking on reproductive parameters. Colonial Waterbirds 12:152–157

    Article  Google Scholar 

  • Fuller GB, Hobson WC, Reyes FI, Winter JSD, Faiman C (1984) Influence of restraint and ketamine anesthesia on adrenal steriods, progesterone, and gonadotrophins in rhesus monkeys (41825). Proc Soc Exp Biol Med 175:487–490

    Article  PubMed  CAS  Google Scholar 

  • Gail MH, Fears TR, Hoover RN, Chandler DW, Donaldson JL, Hyer MB, Pee D, Ricker WV, Siiteri PK, Stanczyk FZ, Vaught JB, Ziegler RG (1996) Reproducibility studies and interlaboratory concordance for assays of serum hormone levels: estrone, estradiol, estrone sulfate, and progesterone. Cancer Epidemiol Biomark Prev 5:835–844

    CAS  Google Scholar 

  • Goymann W, Mostl E, Hof TV, East ML, Hofer H (1999) Noninvasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen Comp Endocrinol 114:340–348

    Article  PubMed  CAS  Google Scholar 

  • Gulland FMD, Haulena M, Lowenstine LJ, Munro C, Graham PA, Bauman J, Harvey J (1999) Adrenal function in wild and rehabilitated Pacific harbor seals (Phoca vitulina richardii) and in seals with phocine herpesvirus-associated adrenal necrosis. Mar Mamm Sci 15(3):810–827

    Article  Google Scholar 

  • Hogg CJ, Vickers ER, Rogers TL (2005) Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography – mass spectrometry. J Chromatogr B 814(2):339–346

    Article  CAS  Google Scholar 

  • Hogg CJ, Rogers TL, Shorter A, Barton K, Miller PJO, Nowacek D (2009) Determination of steroid hormones in whale blow: It is possible. Mar Mamm Sci DOI: 10.1111/j.1748-7692.2008.00277.x

    Google Scholar 

  • Huber S, Palme R, Arnold W (2003) Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen Comp Endocrinol 130(1):48–54

    Article  PubMed  CAS  Google Scholar 

  • Hunt K, Wasser S (2003) Effect of long-term preservation methods on fecal glucocorticoid concentrations of grizzly bear and African elephant. Physiol Biochem Zool 76(6):918–929

    Article  PubMed  CAS  Google Scholar 

  • Iwata E, Hirano Y, Muraoka K, Ogihara M, Suwa R (2003) Measuring saliva progesterone in the California sea lion Zalophus californianus. Jpn J Zoo Wildl Med 8(2):135–138

    Google Scholar 

  • Jurke MH, Czekala NM, Lindburg DG, Millard SE (1997) Faecal corticoid metabolite measurement in the cheetah (Acinonyx jubatus). Zoo Biol 16:133–147

    Article  CAS  Google Scholar 

  • Khan MZ, Altmann J, Isani SS, Yu J (2002) A matter of time: Evaluating the storage of fecal samples for steroid analysis. Gen Comp Endocrinol 128(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • King JE (1983) Seals of the world. British Museum and Cornell University Press, London, New York

    Google Scholar 

  • Kirkpatrick JF, Shideler SE, Lasley B, Turner JW (1991) Pregnancy determination in uncaptured feral horses by means of fecal steroid conjugates. J Theriogenol 35(4):753–760

    Article  CAS  Google Scholar 

  • Kjeld JM (2001) Concentrations of electrolytes, hormones and other constituents in fresh postmortem blood and urine of fin whales (Balaenoptera physalus). Can J Zool 79(3):438–446

    CAS  Google Scholar 

  • Liggins GC, France JT, Knox BS (1979) High corticosteroid levels in plasma of adult and fetal Weddell seals (Leptonychotes weddellii). Acta Endocrinol 90:713–726

    Google Scholar 

  • Liggins GC, France JT, Schneider RC, Knox BS, Zapol W.M. (1993) Concentrations, metabolic clearance rates, production rates and plasma binding of Antarctic phocid seals. Acta Endocrinol 129:356–359

    PubMed  CAS  Google Scholar 

  • Lord A, Waas JR, Innes J, Whittingham MJ (2001) Effects of human approaches to nests of northern New Zealand Dotterels. Biol Cons 98:233–240

    Article  Google Scholar 

  • Lutz CK, Tiefenbacher S, Jorgensen MJ, Meyer JS (2000) Techniques for collecting saliva from awake, unrestrained, adult monkeys for cortisol assay. Am J Primatol 52:93–99

    Article  PubMed  CAS  Google Scholar 

  • Lynch JW, Ziegler TE, Strier KB (2002) Individial and seasonal variation in fecal testosterone and cortisol levels of wild male tufted capuchin monkeys (Cebus apella nigritus). Horm Behav 41:275–287

    Article  PubMed  CAS  Google Scholar 

  • Lynch JW, Khan MZ, Altmann J, Njahira MN, Rubenstein N (2003) Concentrations of four fecal steroids in wild baboons: short-term storage conditions and consequences for data interpretation. Gen Comp Endocrinol 132(2):264–271

    Article  PubMed  CAS  Google Scholar 

  • McLeod PJ, Moger WH, Ryon J, Gadbois S, Fentress JC (1996) The relationship between urinary cortisol levels and social behavior in captive timberland wolves. Can J Zool 74(2):209–216

    Article  CAS  Google Scholar 

  • McShane LM, Dorgan JF, Greenhut SF, Damato JJ (1996) Reliability and validity of serum sex hormone measurements. Cancer Epidemiol Biomarkers Prev 5:923–928

    PubMed  CAS  Google Scholar 

  • Miller MW, Thompson Hobbs N, Sousa MC (1991) Detecting stress responses in Rocky Mountain bighorn sheep (Ovis canadensis canadensis): reliability of cortisol concentrations in urine and feces. Can J Zool 69:15–24

    Article  CAS  Google Scholar 

  • Millspaugh JJ, Washburn BE (2004) Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138:189–199

    Article  PubMed  CAS  Google Scholar 

  • Moberg GP (1985) Influence of stress on reproduction. In: Moberg GP (eds) Animal stress. American Physiological Society, Bethesda, MD, pp 245

    Chapter  Google Scholar 

  • Müllner A, Linsenmair KE, Wikelski M (2004) Exposure to ecotourism reduces survival and affects stress response in Hoatzin chicks (Opisthocomus hoazin). Biol Cons 118:549–558

    Article  Google Scholar 

  • Nakagawa S, Möstl E, Waas JR (2003) Validation of an enzyme immunoassay to measure faecal glucocorticoid metabolites from Adélie penguins (Pygoscelis adeliae): a non-invasive tool for estimating stress? Polar Biol 26:491–493

    Google Scholar 

  • Nephew BC, Kahn SA, Romero LM (2003) Heart rate and behavior are regulated independently of corticosterone following diverse acute stressors. Gen Comp Endocrinol 133:173–180

    Article  PubMed  CAS  Google Scholar 

  • Norman AW, Litwack G (1997) Hormones. Academic, San Diego

    Google Scholar 

  • Pietraszek J, Atkinson S (1994) Concentrations of estrone sulfate and progesterone in plasma and saliva, vaginal cytology, and bioelectric impedance during the estrous cycle of the Hawaiian monk seal (Monachus schauinslandi). Mar Mamm Sci 10(4):430–441

    Article  Google Scholar 

  • Rolland R, Hunt K, Kraus S, Wasser S (2005) Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. Gen Comp Endocrinol 142(3):308–317

    Article  Google Scholar 

  • Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128(1):1–24

    Article  PubMed  CAS  Google Scholar 

  • Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? J Comp Biochem Physiol A 140:73–79

    Article  Google Scholar 

  • Romero LM, Wikelski M (2002) Exposure to tourism reduces stress-induced corticosterone levels in Galápagos marine iguanas. Biol Cons 108:371–374

    Article  Google Scholar 

  • Sanvito S, Galimberti F, Sanvito R, Braschi C (2005) The ‘seal prick’: a low invasive method for blood sampling in male elephant seals. Mar Mamm Sci 21(3):574–581

    Article  Google Scholar 

  • Sapolsky RM (1987) Stress, social status, and reproductive physiology in free-living baboons. In: Crews D (eds) Psychobiology of reproductive behavior: an evolutionary perspective. Prentice-Hall, Englewood Cliffs, NJ, pp 291–322

    Google Scholar 

  • Sapolsky RM (1992) Cortisol concentrations and the social significance of rank instability among wild baboons. Psychoneuroendocrinology 17(6):701–709

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munck A (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory and preparative actions. Endocr Rev 21(1):55–89

    Article  PubMed  CAS  Google Scholar 

  • St Aubin, DJ, Dierauf, LA (2001) Stress and marine mammals. In: Dierauf, LA, Gulland, FMD (eds) CRC handbook of marine mammal medicine, 2nd edn. CRC, Boca Raton, FL, pp 253–269

    Google Scholar 

  • Stoinski TS, Czekala N, Lukas KE, Maple TL (2002) Urinary androgen and corticoid levels in captive, male western lowland gorillas (Gorilla g. gorilla): age- and social group-related differences. Am J Primatol 56:73–87

    Article  PubMed  CAS  Google Scholar 

  • Udelsman R, Chrousos GP (1988) Hormonal responses to surgical stress. Adv Exp Med Biol 245:265–727

    PubMed  CAS  Google Scholar 

  • Walker BG, Boersma PD, Wingfield JC (2006) Habituation of adult Magellanic penguins to human visitation as expressed through behaviour and corticosterone secretion. Cons Biol 20(1):146–154

    Article  Google Scholar 

  • Walker ML, Pepe GJ, Garnett NL, Albrecht ED (1987) Effects of anesthetic agents on the adrenocortical system of female baboons. Am J Primatol 13:325–332

    Article  CAS  Google Scholar 

  • Washburn BE, Millspaugh JJ (2002) Effects of simulated environmental conditions on glucocorticoid metabolite measurements in white-tailed deer faeces. Gen Comp Endocrinol 127:217–22

    Article  PubMed  CAS  Google Scholar 

  • Wasser SK, Thomas R, Nair PP, Guidry C, Southers J, Lucas J, Wildt DE, Monfort SL (1993) Effects of dietary fiber on faecal steroid measurements in baboons (Papio cynocephalus cynocephalus). J Reprod Fertil 97(2):569–574

    Article  PubMed  CAS  Google Scholar 

  • Whembolua G-LS, Granger DA, Singer S, Kivlighan KT, Marguin JA (2006) Bacteria in the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosteron, and testosterone in saliva. Horm Behav 49:478–783

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC (1988) Changes in reproductive function of free-living birds in direct response to environmental perturbations. In: Stetson MH (eds) Processing of environmental information in Vertebrates. Springer, Berlin, pp. 121–148

    Chapter  Google Scholar 

  • Wingfield JC, Romero LM (2001) Adrenocortical responses to stress and their modulation in free-living vertebrates. In: McEwen BS, Goodman HM (eds) Handbook of physiology, section 7, vol IV. The endocrine system. Coping with the environment: neural and endocrine mechanisms. Oxford University Press, New York, pp. 211–234

    Google Scholar 

  • Wingfield JC, Hunt K, Breuner C, Dunlap K, Fowler GS, Freed L, Lepson J (1997) Environmental stress, field endocrinology, and conservation biology. In: Clemmons JR, Buchholz R (eds) Behavioral approaches to conservation in the wild. Cambridge University Press, Cambridge, New York, pp. 95–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hogg, C.J., Rogers, T.L. (2009). Measuring Stress in Antarctic Seals. In: Kerry, K.R., Riddle, M. (eds) Health of Antarctic Wildlife. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93923-8_15

Download citation

Publish with us

Policies and ethics