Skip to main content

An Introduction to Ring-Linear Coding Theory

  • Chapter
  • First Online:
Gröbner Bases, Coding, and Cryptography

Abstract

This contribution gives an introduction to algebraic coding theory over rings. We will start with a historical sketch and then present basics on rings and modules. Particular attention will be paid to weight functions on these, before some foundational results of ring-linear coding will be discussed. Among these we will deal with code equivalence, and with MacWilliams’ identities about the relation between weight enumerators. A further section is devoted to existence bounds and code optimality. An outlook will then be presented on the still unsolved problem of the construction of large families of ring-linear codes of high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Aigner, Combinatorial theory, Springer, Berlin, 1997.

    Book  MATH  Google Scholar 

  • Y. Al-Khamees, The enumeration of finite chain rings, Panamer. Math. J. 5 (1995), no. 4, 75–81.

    MathSciNet  Google Scholar 

  • E. F. Assmus Jr. and H. F. Mattson, Error-correcting codes: An axiomatic approach, Information and Control 6 (1963), 315–330.

    Article  MathSciNet  MATH  Google Scholar 

  • M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison–Wesley, London, 1969.

    MATH  Google Scholar 

  • D. Augot, E. Betti, and E. Orsini, An introduction to linear and cyclic codes, this volume, 2009, pp. 47–68.

    Google Scholar 

  • I. F. Blake, Codes over certain rings, Information and Control 20 (1972), 396–404.

    Article  MathSciNet  MATH  Google Scholar 

  • I. F. Blake, Codes over integer residue rings, Information and Control 29 (1975), 295–300.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Bonnecaze, P. Solé, C. Bachoc, and B. Mourrain, Type II codes over Z 4, IEEE Trans. on Inf. Th. 43 (1997), no. 3, 969–976.

    Article  MATH  Google Scholar 

  • A. Bonnecaze, E. Rains, and P. Solé, 3-colored 5-designs and Z 4 -codes, J. Statist. Plann. Inference 86 (2000), no. 2, 349–368.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965.

    Google Scholar 

  • B. Buchberger, Gröbner-bases: An algorithmic method in polynomial ideal theory, Multidimensional systems theory, Reidel, Dordrecht, 1985, pp. 184–232.

    Chapter  Google Scholar 

  • B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symb. Comput. 41 (2006), nos. 3–4, 475–511.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Byrne and P. Fitzpatrick, Gröbner bases over Galois rings with an application to decoding alternant codes, J. Symbolic Comput. 31 (2001), no. 5, 565–584.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Byrne and P. Fitzpatrick, Hamming metric decoding of alternant codes over Galois rings, IEEE Trans. on Inf. Th. 48 (2002), no. 3, 683–694.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Byrne and T. Mora, Gröbner bases over commutative rings and applications to coding theory, this volume, 2009, pp. 239–261.

    Google Scholar 

  • E. Byrne, M. Greferath, and M. E. O’Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289–301.

    Article  MathSciNet  MATH  Google Scholar 

  • A. R. Calderbank and G. M. McGuire, Construction of a (64,237,12) code via Galois rings, Des. Codes Cryptogr. 10 (1997), no. 2, 157–165.

    Article  MathSciNet  MATH  Google Scholar 

  • A. R. Calderbank and N. J. A. Sloane, Modular and p -adic cyclic codes, Des. Codes Cryptogr. 6 (1995), no. 1, 21–35.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Carlet, \({\mathbb{z}}_{2^{k}}\) -linear codes, IEEE Trans. on Inf. Th. 44 (1998), 1543–1547.

    Article  MathSciNet  MATH  Google Scholar 

  • W. E. Clark and D. A. Drake, Finite chain rings, Abh. Math. Sem. Univ. Hamburg 39 (1973), 147–153.

    Article  MathSciNet  Google Scholar 

  • W. E. Clark and J. J. Liang, Enumeration of finite commutative chain rings, J. Algebra 27 (1973), 445–453.

    Article  MathSciNet  MATH  Google Scholar 

  • P. M. Cohn, Algebra I, Wiley, New York, 1989.

    Google Scholar 

  • I. Constantinescu, Lineare Codes über Restklassenringen ganzer Zahlen und ihre Automorphismen bezüglich einer verallgemeinerten Hamming-Metrik, Ph.D. thesis, Technische Universität München, 1995.

    Google Scholar 

  • S. T. Dougherty, M. Harada, and P. Solé, Shadow codes over 4, Finite Fields Appl. 7 (2001), no. 4, 507–529.

    Article  MathSciNet  MATH  Google Scholar 

  • I. M. Duursma, M. Greferath, S. Litsy, and S. E. Schmidt, A \({\mathbb{z}}_{9}\) -linear code inducing a ternary (72,325,24)-code, Proc. of OC2001, 1999.

    Google Scholar 

  • I. M. Duursma, M. Greferath, S. N. Litsyn, and S. E. Schmidt, A \({\mathbb{z}}\sb8\) -linear lift of the binary Golay code and a nonlinear binary (96,237,24)-code, IEEE Trans. on Inf. Th. 47 (2001), no. 4, 1596–1598.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Greferath, Cyclic codes over finite rings, Discrete Math. 177 (1997), nos. 1–3, 273–277.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Greferath and M. E. O’Sullivan, On bounds for codes over Frobenius rings under homogeneous weights, Discrete Math. 289 (2004), nos. 1–3, 11–24.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams’ equivalence theorem, J. Combin. Theory Ser. A 92 (2000), no. 1, 17–28.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Greferath, A. Nechaev, and R. Wisbauer, Finite quasi-Frobenius modules and linear codes, J. Algebra Appl. 3 (2004), no. 3, 247–272.

    Article  MathSciNet  MATH  Google Scholar 

  • A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, The Z 4 -linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. on Inf. Th. 40 (1994), no. 2, 301–319.

    Article  MATH  Google Scholar 

  • T. Helleseth and P. V. Kumar, The algebraic decoding of the Z 4 -linear Goethals codes, IEEE Trans. on Inf. Th. 41 (1995), no. 6, 2040–2048, part 2.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Kanwar and S. R. López-Permouth, Cyclic codes over the integers modulo p m, Finite Fields Appl. 3 (1997), no. 4, 334–352.

    Article  MathSciNet  MATH  Google Scholar 

  • A. M. Kerdock, A class of low-rate nonlinear binary codes, Information and Control 20 (1972a), 182–187.

    Article  MathSciNet  MATH  Google Scholar 

  • A. M. Kerdock, Information and Control 21 (1972b), 395.

    Article  MathSciNet  Google Scholar 

  • M. Klemm, Über die Identität von MacWilliams für die Gewichtsfunktion von Codes, Arch. Math. (Basel) 49 (1987), no. 5, 400–406.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Krull, Algebraische Theorie der Ringe II, Math. Ann B 91 (1923), 1–46.

    MathSciNet  Google Scholar 

  • T. Y. Lam, A first course in noncommutative rings, Springer, New York, 1991.

    Book  MATH  Google Scholar 

  • T. Y. Lam, Lectures on modules and rings, Springer, Berlin, 1999.

    Book  MATH  Google Scholar 

  • P. Langevin and P. Solé, Duadic Z 4 -codes, Finite Fields Appl. 6 (2000), no. 4, 309–326.

    Article  MathSciNet  MATH  Google Scholar 

  • F. J. MacWilliams, Combinatorial properties of elementary Abelian groups, Ph.D. thesis, Radcliffe College, Cambridge MA, 1962.

    Google Scholar 

  • F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, vols. I and II, North-Holland, Amsterdam, 1977.

    Google Scholar 

  • E. Martínez-Moro and I. F. Rúa, Multivariable codes over finite chain rings: serial codes, SIAM J. Discrete Math. 20 (2006), no. 4, 947–959.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Muegge, Existenzschranken für Blockcodes über endlichen Frobeniusringen, Diplomarbeit, 2002.

    Google Scholar 

  • A. A. Nechaev, Kerdock codes in cyclic form, Discrete Math. Appl. 1 (1991), no. 4, 365–384.

    Article  MathSciNet  MATH  Google Scholar 

  • G. H. Norton and A. Sălăgean, Strong Gröbner bases and cyclic codes over a finite-chain ring, International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001a, p. 11.

    Google Scholar 

  • G. H. Norton and A. Sălăgean, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc. 64 (2001b), no. 3, 505–528.

    Article  MathSciNet  MATH  Google Scholar 

  • G. H. Norton and A. Sălăgean, Gröbner bases and products of coefficient rings, Bull. Austral. Math. Soc. 65 (2002), no. 1, 145–152.

    Article  MathSciNet  MATH  Google Scholar 

  • G. H. Norton and A. Sălăgean, Cyclic codes and minimal strong Gröbner bases over a principal ideal ring, Finite Fields Appl. 9 (2003), no. 2, 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  • F. P. Preparata, A class of optimum nonlinear double-error correcting codes, Information and Control 13 (1968), 466–473.

    Article  MathSciNet  Google Scholar 

  • C. Rong, T. Helleseth, and J. Lahtonen, On algebraic decoding of the Z 4 -linear Calderbank-McGuire code, IEEE Trans. on Inf. Th. 45 (1999), no. 5, 1423–1434.

    Article  MathSciNet  MATH  Google Scholar 

  • G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.

    Article  MathSciNet  MATH  Google Scholar 

  • L. H. Rowen, Ring theory, Academic, San Diego, CA, 1991.

    MATH  Google Scholar 

  • A. Sălăgean-Mandache, On the isometries between \(Z\sb{p\sp k}\) and Z k p , IEEE Trans. on Inf. Th. 45 (1999), no. 6, 2146–2148.

    Article  MATH  Google Scholar 

  • C. Satyanarayana, Lee metric codes over integer residue rings, IEEE Trans. on Inf. Th. 25 (1979), 250–253.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Shankar, On BCH codes over arbitrary integer rings, IEEE Trans. on Inf. Th. 25 (1979), no. 4, 480–483.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Shiromoto, Singleton bounds for codes over finite rings, J. Algebraic Combin. 12 (2000), no. 1, 95–99.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Shiromoto and L. Storme, A Griesmer bound for linear codes over finite quasi-Frobenius rings, Discrete Appl. Math. 128 (2003), no. 1, 263–274, WCC 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Spiegel, Codes over m , Information and Control 35 (1977), 48–51.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Spiegel, Codes over m , revisited, Information and Control 37 (1978), 100–104.

    Article  MathSciNet  MATH  Google Scholar 

  • R. P. Stanley, Enumerative combinatorics, vol. 1, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

    MATH  Google Scholar 

  • J. A. Wood, Extension theorems for linear codes over finite rings, Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997), Springer, Berlin, 1997, pp. 329–340.

    Chapter  Google Scholar 

  • J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Greferath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greferath, M. (2009). An Introduction to Ring-Linear Coding Theory. In: Sala, M., Sakata, S., Mora, T., Traverso, C., Perret, L. (eds) Gröbner Bases, Coding, and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93806-4_13

Download citation

Publish with us

Policies and ethics