Skip to main content

Turbinenschaufel-Kühlung

  • Chapter
  • First Online:
  • 12k Accesses

Part of the book series: VDI-Buch ((VDI-BUCH))

Zusammenfassung

Eine der wirkungsvollsten Methoden zur Steigerung der Leistungsdichte und des thermischen Wirkungsgrades einer Gasturbine im Kombiprozess besteht in der Anhebung der Turbineneintrittstemperatur (s. auch Kap. 2). Abbildung 17-1 zeigt die Entwicklung der Eintrittstemperatur seit 1950. Man erkennt, dass zu Beginn der 50er-Jahre die Gasturbinenschaufeln ohne eine aktive Kühlung auskamen. Dies lag natürlich an den niedrigen Heißgastemperaturen von rund 1000 K, die am Eintritt der Turbine auftraten. Die Entwicklung neuer, leistungsfähiger Gasturbinen mit höheren thermischen Wirkungsgraden verlangte aber gerade eine Steigerung der Eintrittstemperatur in die Turbine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literaturverzeichnis

  1. Annerfeldt MO, Persson JL, Torisson T (2001) Experimental investigation of impingement cooling with turbulators or surface enlarging elements. ASME 2001-GT-149

    Google Scholar 

  2. Amro M et al. (2007) An experimental investigation of the heat transfer in a ribbed triangular cooling channel. Int J of Thermal Sciences 46, 491–500

    Article  Google Scholar 

  3. Armstrong J, Winstanley D (1988) A review of staggered array pin fin heat transfer for turbine cooling applications. J of Turbomachinery 110, 94–103

    Article  Google Scholar 

  4. Beeck A et al. (2003) Cooling system for the leading edge of a hollow blade for a gas turbine. EP0892149

    Google Scholar 

  5. Berg HP (1983) Experimentelle Bestimmung des örtlichen inneren Wärmeübergangs von Turbinenleit- und -laufschaufeln mit Hilfe der Analogie zwischen Wärme- und Stoffübergang. Dissertation, TU Darmstadt

    Google Scholar 

  6. Bohn D et al. (2002) Experimental and numerical investigation of a steam-cooled vane. ASME GT-2002-30210

    Google Scholar 

  7. Brauckmann D (2006) Experimentelle Untersuchung von Filmkühlungsvorgängen an konturierten Bohrungen. Dissertation, Universität Stuttgart

    Google Scholar 

  8. Dailey GM (2000) Design and calculation issues. VKI-LS 2000-03: Aero-thermal performance of internal cooling systems in turbomachinery

    Google Scholar 

  9. Ekkad SV, Kontrovitz D (2002) Jet impingement heat transfer on dimpled target surfaces. Int Journal of Heat and Fluid Flow 23, 22–28

    Article  Google Scholar 

  10. Faulkner FE (1971) Analytical investigation of chord size and cooling methods on turbine blade requirement. NASA CR-120882

    Google Scholar 

  11. Florschuetz LW, Truman CR, Metzger DE (1981) Streamwise flow and heat transfer distributions for jet array impingement with crossflow. ASME 81-GT-77

    Google Scholar 

  12. Florschuetz LW, Metzger DE et al. (1982) Jet array impingement flow distributions and heat transfer characteristics. NASA CR-3630

    Google Scholar 

  13. Frey K (1934) Verminderung des Strömungsverlustes in Kanälen durch Leitflächen. Forschung 5, 105–117

    Google Scholar 

  14. Gauntner JW, Livingwood JNB, Hrycak P (1970) Survey of literaure on flow characteristics of a single turbulent jet impinging on a flat plate. NASA TN D-5652

    Google Scholar 

  15. Goldstein RJ (1971) Film cooling. In: Irvine TF, Hartnett JP (Ed) Advances in heat transfer. Academic Press New York, Vol 7, pp 321–379

    Google Scholar 

  16. Goldstein RJ (Ed) (2001) Heat transfer in gas turbine systems. Annals of the New York Academy of Sciences 934

    Google Scholar 

  17. Gritsch M (1998) Experimentelle Untersuchungen zum aerothermischen Verhalten nichtzylindrischer Filmkühlbohrungen. Dissertation, Universität Karlsruhe

    Google Scholar 

  18. Halls GA (1969) Air cooling of turbine blades and vanes. In: Supersonic turbojet propulsion systems and components. AGARDograph 120, 262 ff.

    Google Scholar 

  19. Han B, Goldstein RJ (2001) Jet impingement heat transfer in gas turbine systems. In: Annals of the New York Academy of Sciences 934, 147–161

    Article  Google Scholar 

  20. Han JC, Jenkins PE (1982) Prediction of film cooling effectiveness of steam. ASME 82-GT-100

    Google Scholar 

  21. Han JC (1984) Heat transfer and friction in channels with two opposite rib-roughened walls. J Heat Transfer 106, 774–781

    Article  Google Scholar 

  22. Han JC, Park JS (1988) Developing heat transfer in rectangular channels with rib turbulators. Int J Heat and Mass Transfer 31, 183–195

    Article  Google Scholar 

  23. Han JC, Huang J, Pang Lee C (1993) Augmented Heat Transfer in Square Channels with Wedge-Shaped and Delta-Shaped Turbulence Promoters. J of Enhanced Heat Transfer 1, 37–52

    Google Scholar 

  24. Han JC, Dutta S (1995) Internal convection heat transfer and cooling: An experimental approach. VKI-LS: Heat transfer and cooling in gas turbines

    Google Scholar 

  25. Han JC, Zhang P (1991) Effects of rib-angle orientation on local mass transfer distribution in three-pass smooth and rib-roughened channels. J of Turbomachinery 113, 123–130

    Article  Google Scholar 

  26. Han JC, Dutta S, Ekkad SV (2001) Gas turbine heat transfer and cooling technology. Taylor & Francis, London

    Google Scholar 

  27. Harasgama SP (1995) Aerothermal aspects of gas turbine flows. VKI-LS 1995-05: Heat transfer and cooling in gas turbines

    Google Scholar 

  28. Hirota M, Fujita H et al. (1999) Heat/mass transfer characteristics in two-pass smooth channels with sharp 180-deg. turn. Int J Heat Mass Transfer 42, 3757–3770

    Article  Google Scholar 

  29. Johnson BV, Wagner JH, Steuber GD (1993) Effects of rotation on coolant passages with trips normal and skewed to the flow. NASA-CR-4396

    Google Scholar 

  30. Jubran BA, Hamdan MA, Abdualh RM (1993) Enhanced heat transfer, missing pin, and optimization for cylindrical pin fin arrays. ASME J Heat Transfer 115, 576–583

    Article  Google Scholar 

  31. Kail C (1997) Bewertung der zur Zeit besten gasbefeuerten Kraftwerksprozesse mit Heavy-Duty Gasturbinen, VDI-Berichte 1321. VDI, Düsseldorf

    Google Scholar 

  32. Kays WM, Crawford ME, Weigand B (2004) Convective heat and mass transfer. Mc Graw-Hill, New York

    Google Scholar 

  33. Kercher DM, Tabakoff W (1970) Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effects of spent air. J of Engng of Power 73, 73–82

    Article  Google Scholar 

  34. Kestin J, Wood RT (1970) The influence of turbulence on mass transfer from cylinders. J Heat Transfer 93, 321–327

    Article  Google Scholar 

  35. Krückels J et al. (2007) Turbine blade thermal design process enhancements for increased firing temperatures and reduced coolant flow. ASME GT2007-27457, Montreal

    Google Scholar 

  36. Krüger U et al. (2001) Analysis of the influence of cooling steam conditions on the cooling efficiency of a steam cooled vane using the conjugate calculation technique. ASME 2001-GT-0166

    Google Scholar 

  37. Lakshminarayana B (1996) Fluid dynamics and heat transfer of turbomachinery. Wiley & Sons, New York

    Google Scholar 

  38. Leontiev AI (1999) Heat and mass transfer problems for film cooling. J Heat Transfer 121, 509–527

    Article  Google Scholar 

  39. Ligrani PM, Oliveira MM, Blaskovich T (2003) Comparison of heat transfer augmentation techniques. AIAA Journal 41, 337–362

    Article  Google Scholar 

  40. Lutum E et al. (2000) Film cooling on a convex surface with zero pressure gradient flow. Int J Heat and Mass Transfer 43, 2973–2987

    Article  Google Scholar 

  41. Metzger DE, Plevich CW, Fan C S (1984) Pressure loss through sharp 180-deg turns in smooth rectangular channels. J of Engng for Gas Turbines and Power 106, 677–681

    Article  Google Scholar 

  42. Metzger DE (1985) Cooling techniques for gas turbine airfoils – A survey. Proc of AGARD Conf, Bergen (Norwegen), pp 1–13

    Google Scholar 

  43. Nomoto H et al. (1997) The Advanced Cooling Technology for the 1500 °C Class Gas Turbines: Steam Cooled Vanes and Air-Cooled Blades. ASME J of Eng For Gas Turbines and Power 119, 624–632

    Article  Google Scholar 

  44. Pagenkopf U (1996) Untersuchung der lokalen konvektiven Transportvorgänge auf Prallflächen. Dissertation, TU Darmstadt

    Google Scholar 

  45. Pape D (2008) Experimentelle Untersuchung der Strömung und der Wärmeübertragung in 180 -Umlenkungen. Dissertation, Universität Stuttgart

    Google Scholar 

  46. Plevich CW (1985) Effects of turning vanes, radial ribs and corner fillets on flow patterns and pressure losses in rectangular duct 180-deg turns. MS Thesis, AZ

    Google Scholar 

  47. Rathjen L (2003) Experimentelle Wärme-/Stoffübergangsuntersuchungen an einem rotierenden Kühlkanalmodell mit Rippen. Dissertation, TU Darmstadt

    Google Scholar 

  48. Schabacker J (1998) PIV investigation of the flow characteristics in internal coolant passages of gas turbine airfoils with two ducts connected by a sharp 180  bend. Dissertation, EPFL, Lausanne

    Google Scholar 

  49. Schulenberg T, Kopper F, Richardson J (1995) An advanced blade design for V84.3 gas turbines. VDI-Bericht, Nr. 1185, 257–275, Düsseldorf

    Google Scholar 

  50. Sieger K (1993) Vergleich der Leistungsfähigkeit erweiterter k-ε-Turbulenzmodelle bei der Berechnung transitionaler Grenzschichten an Gasturbinenschaufeln. Dissertation, Univ. Karlsruhe

    Google Scholar 

  51. Spring S et al. (2008) CFD heat transfer predictions for gas turbine combustor impingement cooling configuration, The 12th Int. Symp. in Transport Phenomena and Dynamics of Rot. Machinery, Honolulu

    Google Scholar 

  52. Takeishi K-I, Aoki S (2001) Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 1: Film cooling. Annals of the New York Academy of Sciences 934, 305–312

    Article  Google Scholar 

  53. Taslim ME, Setayeshgar L, Spring SD (2000) An experimental evaluation of advanced leading edge impingement cooling concepts. ASME GT-0222

    Google Scholar 

  54. Tsukagoshi K et al. (2002) Trial operation results of steam cooled M501H type gas turbine. MHI Ltd. Technical Review 39, 85–89

    Google Scholar 

  55. Vassiliev V et al. (2005) Thermal state analysis of industrial gas turbine blades. ASME GT2005, 68951, Nevada

    Google Scholar 

  56. Wolfersdorf Jv, Weigand B, Schnieder M (2006) Heat Transfer Enhancement Techniques and their Application in Turbomachinery, Flow phenomena in nature: A challenge to engineering design, Liebe R (Ed), ISBN 1-84564-001-2, S 470–504

    Google Scholar 

  57. Wang TS, Chyu MK (1994) Heat convection in a 180-deg. turning duct with different turn configurations. J of Thermoph and Heat Transfer 8, 595–601

    Article  Google Scholar 

  58. Weigand B, Semmler K, Wolfersdorf Jv (2001) Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines. Annals of the New York Academy of Sciences 934, 179–193

    Article  Google Scholar 

  59. Weigand B, Wolfersdorf Jv, Neumann SO (2005) Entwicklungsstand der Kühltechnologien für Gasturbinenschaufeln moderner, hocheffizienter Gasturbinen, Proc. der VGB Fachtagung „Gasturbinen und Gasturbinenbetrieb“, Dresden

    Google Scholar 

  60. Yamawaki S (2001) Verifying heat transfer analysis of high pressure cooled turbine blades and disk. Annals of the New York Academy of Sciences 934, 505–512

    Article  Google Scholar 

  61. Yeh FC, Stepka FS (1984) Review and status of heat transfer technology for internal passages of air-cooled turbine blades. NASA TP 2232:1–33

    Google Scholar 

  62. Yoshida T (2001) Cooling systems for ultra-high temperature turbines. Annals of the New York Academy of Sciences 934, 194–205

    Article  Google Scholar 

  63. Zuckermann N, Lior N (2005) Impingement heat transfer: correlations and numerical modeling. ASME J Heat Transfer 127, 544–552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Weigand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weigand, B. (2010). Turbinenschaufel-Kühlung. In: Lechner, C., Seume, J. (eds) Stationäre Gasturbinen. VDI-Buch(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92788-4_17

Download citation

Publish with us

Policies and ethics