Skip to main content

Aboveground and Belowground Consequences of Long-Term Forest Retrogression in the Timeframe of Millennia and Beyond

  • Chapter
  • First Online:
Old-Growth Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 207))

Abstract

Old growth forests that have not experienced significant disturbance for several millennia often undergo ‘ecosystem retrogression’, which is characterised by reduced availability of key nutrients and a large decline in aboveground productivity. In this chapter, the consequences of ecosystem retrogression for community and ecosystem processes are explored through studies conducted over the past 12 years on forested lake islands in northern Sweden that vary tremendously in historical fire regime, and undergo retrogression in the prolonged absence of fire. The ecological effects of retrogression are then evaluated in a more general manner by considering changes that occur in six well established long-term forested chronosequences around the world that each include retrogressive stages. These chronosequences collectively illustrate how aboveground and belowground ecosystem processes consistently decline in forests during retrogression as a result of phosphorus becomingly increasingly limiting relative to nitrogen, and point to similar ecological responses to retrogression in boreal, temperate and subtropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashton PS (1989) Species richness in tropical forests. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests. Academic, London, pp 239–251

    Google Scholar 

  • Asselin H, Belleau A, Bergeron Y (2006) Factors responsible for the co-occurrence of forested and unforested rock outcrops in the boreal forest. Landsc Ecol 21:271–280

    Article  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  • Bergeron Y (1991) The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology 72:1980–1992

    Article  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–487

    Article  Google Scholar 

  • Brais S, Camire C, Bergeron Y, Pare D (1995) Changes in nutrient availability and forest floor characteristics in relation to stand age and forest composition in the southern part of the boreal forests of northwest Quebec. For Ecol Manage 76:181–189

    Article  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497

    Article  CAS  Google Scholar 

  • Chapin FS, Walker LR, Fastie C, Sharman L (1994) Mechanisms of post-glacial primary succession at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–15

    Article  Google Scholar 

  • Coomes DA, Allen RB, Bently WA, Burrows LE, Canham CD, Fagan L, Forsyth DM, Gaxiola-Alcantar A, Parfitt RL, Ruscoe WA, Wardle DA, Wilson DJ, Wright EF (2005) The hare, the tortoise, and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. J Ecol 93:918–935

    Article  Google Scholar 

  • Crews TE, Kitayama K, Fownes D, Herbert D, Muller-Dombois D, Riley RH, Vitousek PM (1995) Changes in soil phosphorus and ecosystem dynamics along a long term chronosequence in Hawai'i. Ecology 76:1407–1424

    Article  Google Scholar 

  • Crews TE, Farrington H, Vitousek PM (2000) Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of Metrosideros polymorpha with long-term ecosystem development in Hawaii. Ecosystems 3:386–395

    Article  CAS  Google Scholar 

  • Dearden FM, Dehlin H, Wardle DA, Nilsson M-C (2006) Changes in the ratio of twig to foliage in litterfall and consequences for decomposition across a long-term fire-induced chronosequence. Oikos 115:453–462

    Article  Google Scholar 

  • De Luca TH, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214

    Article  Google Scholar 

  • Doblas-Miranda E, Wardle DA, Peltzer DA, Yeates GW (2008) Changes in the community structure and diversity of soil invertebrates across the Franz Josef Glacier chronosequence. Soil Biol Biochem 40:1069–1081

    Article  CAS  Google Scholar 

  • Gallet C, Lebreton P (1995) Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biol Biochem 27:157–165

    Article  CAS  Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378.382

    Article  Google Scholar 

  • Grace JB (2001) The roles of community biomass and species pools in the regulation of plant diversity. Oikos 92:193–207

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem processes. Wiley, Chichester

    Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877

    Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge D, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge and needs for future research. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hörnberg G, Zackrisson O, Segerstrom U, Svensson BW, Ohlson M, Bradshaw RHW (1996) Boreal swamp forests. BioScience 48:795–802

    Article  Google Scholar 

  • Lagerström A, Nilsson M-C, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033

    Article  Google Scholar 

  • Lecomte N, Simard M, Fenton N, Bergeron Y (2006) Fire severity and long term biomass dynamics in coniferous boreal forests of eastern Canada. Ecosystems 9:1215–1230

    Article  Google Scholar 

  • Légaré S, Pare D, Bergeron Y (2005) Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 275:207–220

    Article  CAS  Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–261

    Article  Google Scholar 

  • Niklasson M, Granström A (2000) Numbers and size of fires: long term spatially explicit fire history in a Swedish boreal forest. Ecology 81:1484–1499

    Article  Google Scholar 

  • Nilsson M-C (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7

    Article  Google Scholar 

  • Nilsson M-C, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Fron Ecol Environ 3:421–428

    Google Scholar 

  • Noble MG, Lawrence DB, Streveler GP (1984) Sphagnum invasion beneath an evergreen forest canopy in southeastern Alaska. Bryologist 87:119–127

    Article  Google Scholar 

  • Northup RR, Yu ZS, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter-soil interactions: a positive feedback. Biogeochemistry 42:189–220

    Article  CAS  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumponnen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • Payette S (1992) Fire as a controlling process in the North American boreal forest. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, Cambridge, UK pp 144–169

    Chapter  Google Scholar 

  • Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE (2007) Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:158–170

    Article  CAS  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267–276

    Article  PubMed  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74:393–414

    Article  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    Article  PubMed  Google Scholar 

  • Scheu S (1990) Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia 84:351–358

    Google Scholar 

  • Thompson CH (1981) Podzol chronosequences on coastal sand dunes of eastern Australia. Nature 291:59–61

    Article  Google Scholar 

  • Turnbull MH, Tissue DT, Griffin KL, Richardson SJ, Peltzer DA, Whitehead D (2005) Respiration characteristics in temperate rainforest tree species differ along a long-term soil-development chronosequence. Oecologia 143:271–279

    Article  PubMed  Google Scholar 

  • Turner BL, Condron LM, Richardson SJ, Peltzer DA, Allison VJ (2007) Soil organic phosphorus transformations during pedogenesis. Ecosystems 10:1166–1181

    Article  CAS  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai'i as a model ecosystem. Princeton Univ Press, Princeton

    Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    Article  CAS  Google Scholar 

  • Walker J, Reddell P (2007) Retrogressive succession and the restoration of old landscapes. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecosystem retrogression. Springer, New York, pp 69–89

    Google Scholar 

  • Walker J, Thompson CH, Fergus IF, Tunstall BR (1981) Plant succession and soil development in coastal sand dunes of subtropical eastern Australia. In: West DC, Shugart HH, Botkin DB (eds) Forest succession: concepts and application. Springer, New York, pp 107–131

    Google Scholar 

  • Walker J, Thompson CH, Reddel P, Rapport DJ (2001) The importance of landscape age in influencing landscape health. Ecosyst Health 7:7–14

    Article  Google Scholar 

  • Walker LR, Chapin FS III (1987) Interactions among processes controlling successional change. Oikos 50:131–135

    Article  Google Scholar 

  • Walker LR, Del Moral R (2001) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Ward CM (1988) Marine terraces of the Waitutu district and their relation to the late Cenozoic tectonics of the southern Fiordland region, New Zealand. J R Soc N Z 18:1–28

    Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    Article  CAS  Google Scholar 

  • Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Zackrisson O, Hörnberg G, Gallet C (1997) Influence of island area on ecosystem properties. Science 277:1296–1299

    Article  CAS  Google Scholar 

  • Wardle DA, Hörnberg G, Zackrisson O, Kalela-Brundin M, Coomes DA (2003) Long term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–975

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A (2008) The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos 117:93–103

    Article  Google Scholar 

  • Weiner J, Thomas SC (2001) The nature of tree growth and the ‘age-related decline in forest productivity’. Oikos 94:374–376

    Article  Google Scholar 

  • White PS, Jentsch A (1979) The search for generality in studies of disturbance and ecosystem development. Progr Bot 62:399–449

    Google Scholar 

  • Whitehead D, Boelman NT, Turnbull MH, Griffin KL, Tissue DT, Barbour MM, Hunt JE, Richardson SJ, Peltzer DA (2005) Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand. Oecologia 144:233–244

    Article  PubMed  Google Scholar 

  • Williamson WM, Wardle DA, Yeates GW (2005) Changes in soil microbial and nematode communities during ecosystem retrogression across a long term chronosequence. Soil Biol Biochem 37:1289–1301

    Article  CAS  Google Scholar 

  • Zackrisson O (1977) Influence of forest fires in the Swedish boreal forest. Oikos 29:22–32

    Article  Google Scholar 

  • Zackrisson O, Nilsson MC, Dahlberg A, Jäderlund A (1997) Interference mechanisms in conifer-Ericaceae-feathermoss communities. Oikos 78:209–220

    Article  Google Scholar 

Download references

Acknowledgements

The work on the Swedish lake islands has benefitted from collaborations with Olle Zackrisson, Greger Hörnberg, Marie-Charlotte Nilsson, Micael Jonsson and Anna Lagerström. The work on the other five chronosequences has benefitted from collaborations with Richard Bardgett, Lars Walker and Duane Peltzer, and sampling trips to specific sequences has been made possible with help from Heraldo Farrington, Peter Vitousek, the late Cliff Thompson, and Joe Walker. Yves Bergeron and Gerd Gleixner provided helpful comments on a draft version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wardle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wardle, D.A. (2009). Aboveground and Belowground Consequences of Long-Term Forest Retrogression in the Timeframe of Millennia and Beyond. In: Wirth, C., Gleixner, G., Heimann, M. (eds) Old-Growth Forests. Ecological Studies, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92706-8_9

Download citation

Publish with us

Policies and ethics