Skip to main content

Temperate and Boreal Old-Growth Forests: How do Their Growth Dynamics and Biodiversity Differ from Young Stands and Managed Forests?

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 207))

Abstract

This chapter investigates biomass, net primary productivity (NPP), and net ecosystem productivity (NEP) of boreal and temperate forest ecosystems in relation to stand density and age. Forests may accumulate woody biomass at constant rate for centuries and there is little evidence of an age-related decline in productivity. Self thinning and management may lead to a loss of tree-individuals to the extent that the available ground surface is no longer covered, thus leading to a decline in productivity per unit ground area. Carbon-accumulation of old forests is similar to that of young forests at the same yield class and of the same species. However, due to the accumulated mass per area and the increased spread of fungal heartwood rot, old forests become unstable and collapse due to external forces, mainly wind. Since carbon accumulation and collapse are highly asymmetric in time, old stands are rarer than young stands. Forest structure and management, rather than stand age, determine NPP. There is no clear distinction in productivity between primary and managed forest, except that managed forests are generally harvested at an age below 100 years. Although unmanaged forests sustain natural processes, biodiversity – expressed as species richness – is not necessarily higher in unmanaged compared to managed forests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Binkley D, Stape JL, Ryan MG, Barnard HR, Fownes J (2002) Age-related decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. Ecosystems 5:58–67

    Article  Google Scholar 

  • Carey EV, Sala A, Keane R, Callaway EM (2001) Are old forests underestimated as global carbon sinks? Glob Change Biol 7:339–344

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Ciais P, Janssens I, Shvidenko A, Wirth C, Malhi Y, Grace J, Schulze E-D, Heimann M, Phillips O, Dolman AJ (2005) The potential for rising CO2 to account for the observed uptake of carbon by tropical, temperate and boreal forest biomes. In: Griffith H, Jarvis P (eds) The carbon balance of forest biomes. Taylor and Francis, Milton Park, UK, pp 109–150

    Google Scholar 

  • Decision-/CP.13 (2007) Reducing emissions from deforestation in developing countries: approaches to stimulate action. FCCC/CP.13

    Google Scholar 

  • Ellenberg H (1993) Vegetation Mitteleuropas mit den Alpen. Ulmer, Heidelberg

    Google Scholar 

  • Erteld T, Gerold D, Mund M, Schulze E-D, Weller E (2005) Vorrat, Zuwachs und Nutzung im plenterwaldartigen Buchenwald. AFZ-Der Wald 13:702–706

    Google Scholar 

  • Hessenmoeller D, Schulze ED, Grossmann M (2009) Zustand und Entwicklungstendenzen im Naturwald “Schoenstedter Holz” des Nationalparks Hainich. Allg Forstjagdz (in press)

    Google Scholar 

  • Hoegberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hoegberg MN, Nyberg G, Otto-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget; contributions from land use change. Science 285:574–578

    Article  CAS  PubMed  Google Scholar 

  • Houghton RA, Skole DL, Nohre CA, Hackler IL, Lawrence KT, Chomentowsski WH (2000) Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403:301–304

    Article  CAS  PubMed  Google Scholar 

  • Hunt R (1982) Plant growth curves. The functional approach to growth analysis. Arnold, London

    Google Scholar 

  • IPCC (2001) Climate Change 2001: the science of climate change, WG I. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, WG I. Cambridge University Press, Cambridge

    Google Scholar 

  • Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jpn J Ecol 17:70–87

    Google Scholar 

  • Korpel S (1995) Die Urwälder der Westkarpaten. Fischer, Stuttgart

    Google Scholar 

  • Kramer H (1988) Waldwachstumslehre. Parey, Hamburg

    Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Reichstein M, Papale D, Piao S, Schulze E-D, Wingate L, Matteucci G, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Chambers J, Ciais P, Davis KJ, Delucia EH, Dolman AJ, Don A, Gielen B, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger D, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law B, Le Maire G, Lindroth A, Magnani F, Marek M, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Loustau D, Pita G, Rebmann C, Richardson AD, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Soerensen L, Tang J, Valentini R, Vesala T, Janssens IA (2007) Global patterns in forest CO2-balance – an analysis based on a new global database. Glob Change Biol 13:1–29

    Article  Google Scholar 

  • Luyssaert S, Schulze E-D, Boerner A, Knohl A, Hessenmoeller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  PubMed  Google Scholar 

  • Mollicone D, Achard F, Marchesini LB, Federici S, Wirth C, Leipold M, Rosellini S, Schulze E-D, Valentini R (2002) A remote sensing based approach to determine forest fire cycle: case study of the Yenisei Ridge dark taiga. Tellus 54B:688–695

    Google Scholar 

  • Mollicone D, Hugh DE, Archard F (2006) Human role in Russian wild fires. Nature 440:436–437

    Article  CAS  PubMed  Google Scholar 

  • Mund M, Schulze E-D (2006) Impacts of forest management on the carbon budget of European beech (Fagus sylvatica) forests. Allg Forstjagdz 177:47–63

    Google Scholar 

  • Mund M, Kummetz E, Hein M, Bauer GA, Schulze E-D (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. For Ecol Manag 171:275–296

    Article  Google Scholar 

  • Nationalpark Hainich (2006) Artenbericht 2005: Tiere, Pflanzen und Pilze im Nationalpark Hainich. Freistaat Thüringen, Bad Langensalza

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Quine CP, Gardiner BA (2006) Understanding how the interaction of wind and trees results in windthrow, stem breakage, and canopy gap formation. In: Johnson EA, Miyaniski K (eds) Plant disturbance ecology, the processes and the responses. Elsevier, Amsterdam

    Google Scholar 

  • Reichstein M, Papale R, Valentini R, Aubinet M, Bernhifer C, Knohl A, Laurila T, Lindroth A, Moors E, Pilgaard K, Seufert G (2007) Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys Res Lett 34:L01402, doi:01410.01029/02006GL027880

    Google Scholar 

  • Scherzinger W (1996) Naturschutz im Wald. Ulmer, Stuttgart

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  CAS  PubMed  Google Scholar 

  • Schober R (1995) Ertragstafeln wichtiger Baumarten, 4th edn. Sauerländer, Frankfurt

    Google Scholar 

  • Schulze ED, Bazzaz FA, Nadelhoffer KJ, Koike T, Takatsuki S (1996) Biodiversity and ecosystem function of temperate deciduous broad-leaved forest. SCOPE 55:71–98

    Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2005a) Plant ecology. Springer, Heidelberg, pp 403–406

    Google Scholar 

  • Schulze E-D, Wirth C, Mollicone D, Ziegler W (2005b) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 146:77-88. doi:10.1007/s00442-005-0173-6

    Google Scholar 

  • Schulze ED, Mischi G, Asche G, Boerner A (2007) Land-use history and succession of Larix decidua in the Southern Alps of Italy – an essay based on a cultural history study of Roswitha Asche. Flora 202:705–713

    Google Scholar 

  • Schulze E-D, Mollicone D, von Luepke N, Ziegler W, Achard F, Mund M (2009) The role of fire for succession and carbon dynamics of central Siberian larch forest. Oecologia (in press)

    Google Scholar 

  • Shvidenko A, Nielsson S (1994) What do we know about Siberian forests? Ambio 23:396–404

    Google Scholar 

  • Sitte P, Weiler E, Bresinsky A, Kadereit J, Koerner Ch (2005) Lehrbuch der Botanik, 35th edn. Spektrum, Heidelberg

    Google Scholar 

  • TBFRA (2005) Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand. United Nations, p 244

    Google Scholar 

  • UNFCCC (1992) United Nations Framework Convention on Climate Change. FCCC/INFORMAL/84, GE.05-62220 (E) 200705. Article 2. http://www.unfccc.int/resource/docs/convkp/conveng.pdf

  • Van Tuyl S, Law BE, Turner DP, Gitelman AI (2005) Variability in net primary production and carbon storage in biomass across Oregon forests – an assessment integrating data from forest inventories, intensive sites, and remote sensing. For Ecol Manage 209:273–291

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • WBGU (1997) World in transition: ways towards sustainable management of freshwater resources. Annual Report 1997, Springer, Heidelberg

    Google Scholar 

  • Wirth C, Schulze ED, Schwalbe G, Tomczyk S, Weber G, Weller E (2004) Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens. Mitteilungen der Thüringer Landesanstalt für Wald, Jagd und Fischerei 23/2004

    Google Scholar 

  • Yoda K, Kira T, Ogawa H, Hozumi H (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. Inst Polytech Osaka City Univ Ser D 14:107–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst-Detlef Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulze, ED., Hessenmoeller, D., Knohl, A., Luyssaert, S., Boerner, A., Grace, J. (2009). Temperate and Boreal Old-Growth Forests: How do Their Growth Dynamics and Biodiversity Differ from Young Stands and Managed Forests?. In: Wirth, C., Gleixner, G., Heimann, M. (eds) Old-Growth Forests. Ecological Studies, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92706-8_15

Download citation

Publish with us

Policies and ethics