Skip to main content

Regulation of Circadian Rhythms of Paramecium bursaria by Symbiotic Chlorella Species

  • Chapter
  • First Online:
Endosymbionts in Paramecium

Part of the book series: Microbiology Monographs ((MICROMONO,volume 12))

Abstract

Cells of Paramecium bursaria show many kinds of circadian rhythms, including mating reactivity and photoaccumulation. The period length and the phase of circadian rhythms are regulated by symbiotic Chlorella sp. under constant light. Chlorella-free white cells of an arrhythmic mutant are rescued from the aberrant mating rhythm by reinfecting them with Chlorella sp. isolated from wild-type Chlorella-containing green cells. Photosynthetic products of symbiotic Chlorella sp. are also effective for rescuing arrhythmic mutant white cells. Green cells show a higher tolerance to high-temperature stress and chemicals than white cells. The immaturity length of progeny from green cells is shorter than that from white cells. The functional symbiosis of Chlorella sp. in P. bursaria serves as a good model for the biological coevolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol 25:11–28

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1981) Free-running and entrained circadian rhythms. In: Aschoff J (ed) Handbook of behavioral neurobiology. Plenum, New York, pp 81–93

    Google Scholar 

  • Barnett A (1966) A circadian rhythm of mating type reversals in Paramecium multimicronucleatum, syngen 2, and its genetic control. J Cell Physiol 67:239–270

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341:197–205

    Article  PubMed  CAS  Google Scholar 

  • Bleyman LK, Simon EM (1967) genetic control of maturity in Tetrahymena pyriformis. Genet Res 10:319–321

    Article  PubMed  CAS  Google Scholar 

  • Block GD, Khalsa SBS, McMahon DG, Michel S, Geusz M (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int Rev Cytol 146:83–144

    Article  PubMed  CAS  Google Scholar 

  • Bruce VG, Pittendrigh CS (1956) Temperature independence in a unicellular ‘clock’. Proc Natl Acad Sci U S A 42:676–682

    Article  PubMed  CAS  Google Scholar 

  • Butko P (1988) Oxygen evolution of synchronous Chlorella under continuous and flash illumination. J Photochem Photobiol B 1:447–450

    Article  CAS  Google Scholar 

  • Chen TT (1946) Temporary pair formation in Paramecium bursaria. Biol Bull 91:274–300

    Article  Google Scholar 

  • Cohen LW (1965) The basis for the circadian rhythm of mating in Paramecium bursaria. Exp Cell Res 37:360–367

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer, Sunderland

    Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular bases of biological clock. Springer, New York

    Google Scholar 

  • Ehret CF (1953) An analysis of the role of electromagnetic radiations in the mating reaction of Paramecium bursaria. Physiol Zool 26:274–300

    Google Scholar 

  • Ehret CF, Truco E (1967) Molecular models for the circadian clock. I. The chronon concept. J Theor Biol 15:240–262

    Article  PubMed  CAS  Google Scholar 

  • Freund WD, Mayr GW, Tietz C, Schultz J (1992) Metabolism of Inositol phosphates in the protozoan Paramecium. Eur J Biochem 207:359–367

    Article  PubMed  CAS  Google Scholar 

  • Haga N, Hiwatashi K (1981) A protein called immaturin controlling sexual immaturity in Paramecium. Nature 289:177–179

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Tanakadate A (1984) Circadian rhythm of locomotor behavior in a population of Paramecium multimicronucleatum: its characteristics as derived from circadian changes in the swimming speeds and the frequencies of avoiding response among individual cells. Photochem Photobiol 40:105–112

    Article  Google Scholar 

  • Hasegawa K, Katakura T, Tanakadate A (1984) Circadian rhythm in the locomotor behavior in a population of Paramecium multimicronucleatum. J Interdiscipl Cycle Res 15:45–56

    Google Scholar 

  • Hiwatashi K (1981) Sexual interactions of the cell surface in Paramecium. In: O’Day DH, Horgen PA (eds) Sexual interaction in eukaryotic microbes. Academic, New York, pp 351–378

    Google Scholar 

  • Hosoya H, Kimura K, Matsuda S, Kitaura M, Takahashi T, Kosaka T (1995) Symbiotic algal-free strains of the green paramecium Paramecium bursaria produced by herbicide paraquat. Zool Sci 12:807–810

    Article  CAS  Google Scholar 

  • Imafuku M (1975) Adaptation of the circadian rhythm of mating-reactivity to abnormal light-dark cycle in Paramecium bursaria. J Interdiscipl Cycle Res 6:141–151

    Google Scholar 

  • Iwatsuki K, Naitoh Y (1988) Behavioral responses to light in Paramecium bursaria in relation to its symbiotic green alga Chlorella. J Exp Biol 134:43–60

    Google Scholar 

  • Iwatsuki K, Nishidoi M, Suehiro K (1998) Symbiotic Chlorella enhances the thermal tolerance in Paramecium bursaria. Comp Biochem Physiol Part A 121:405–409

    Article  Google Scholar 

  • Jennings HS (1939) Genetics of Paramecium bursaria: I. Mating type and groups, their interrelations and distribution; mating behavior and self sterility. Genetics 24:202–233

    PubMed  CAS  Google Scholar 

  • Jennings HS (1944) Paramecium bursaria: Life history. I. Immaturity, maturity and age. Biol Bull Mar Biol Lab Woods Hole 86:131–145

    Article  Google Scholar 

  • Johnson CH, Hastings JW (1986) The elusive mechanism of circadian clock. Am Scient 74:29–36

    Google Scholar 

  • Johnson CH, Miwa I, Kondo T, Hastings JW (1989) Circadian rhythm of photoaccumulation in Paramecium bursaria. J Biol Rhythms 4:405–415

    Article  PubMed  Google Scholar 

  • Johnson CH, Nakaoka Y, Miwa I (1994) The effects of altering extracellular potassium ion concentration on the membrane potential and circadian clock of Paramecium bursaria. J Exp Biol 197:295–308

    PubMed  CAS  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Johnson CH, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. Plant Physiol 95:197–205

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiura M, Golden SS, Johnson CH (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 90:5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Loefer JB (1936) Isolation and growth characteristics of the ‘zoochlorella’ of Paramecium bursaria. Am Midl Nat 70:184–188

    Google Scholar 

  • Machemer H (1988) Motor control of cilia. In: Görtz H-D (ed) Paramecium. Springer, Berlin, pp 216–235

    Google Scholar 

  • Machemer H (1989) Cellular behaviour modulated by ions: electrophysiological implications. J Protozool 36:463–487

    CAS  Google Scholar 

  • Machemer H, Eckert R (1975) Ciliary frequency and orientational responses to clamped voltage steps in Paramecium. J Comp Physiol 104:247–260

    Article  Google Scholar 

  • Matsuoka K, Nakaoka Y (1988) Photoreceptor potential causing phototaxis of Paramecium bursaria. J Exp Biol 137:477–485

    Google Scholar 

  • Meier R, Wiessner W (1988) Infection of algae-free Paramecium bursaria with symbiotic Chlorella sp isolated from green paramecia. I. Effect of the incubation period. Europ J Protistol 24:69–74

    Google Scholar 

  • Mergenhagen D (1980) Circadian rhythms in unicellular organisms. Curr Top Microbiol Immunol 90:123–147

    PubMed  CAS  Google Scholar 

  • Miwa I (1979a) Specificity of the immaturity substances in Paramecium. J Cell Sci 36:253–260

    CAS  Google Scholar 

  • Miwa I (1979b) Immaturity substances in Paramecium primaurelia and their specificity. J Cell Sci 38:193–199

    CAS  Google Scholar 

  • Miwa I, Hiwatashi K (1970) Effect of mitomycin C on the expression of mating ability in Paramecium caudatum. Jpn J Genet 45:269–275

    Article  Google Scholar 

  • Miwa I, Wada T (1995) Light pulses and injection of IP3 induce mating ability in Paramecium bursaria. J Exp Zool 272:338–344

    Article  CAS  Google Scholar 

  • Miwa I, Yajima H (1995) Correlation of the period length of circadian rhythms with the length of immaturity in Paramecium bursaria. Zool Sci 12:53–59

    Article  PubMed  CAS  Google Scholar 

  • Miwa I, Haga N, Hiwatashi K (1975) Immaturity substances: Material basis for immaturity in Paramecium. J Cell Sci 19:369–378

    PubMed  CAS  Google Scholar 

  • Miwa I, Nagatoshi H, Horie T (1987) Circadian rhythmicity within single cell of Paramecium bursaria. J Biol Rhythms 2:57–64

    Article  PubMed  CAS  Google Scholar 

  • Miwa I, Kanazawa Y, Ishikawa K, Hirose M (1989) Synchronization of mating reactivity rhythms in populations of Paramecium bursaria. J Protozool 36:24–28

    Google Scholar 

  • Miwa I, Izumo T, Sonoda T (1996a) Cytoplasm rescues an arrhythmic mutant on the circadian rhythm of mating reactivity in Paramecium bursaria. J Eukaryot Microbiol 43:231–236

    Article  CAS  Google Scholar 

  • Miwa I, Fujimori N, Tanaka M (1996b) Effects of symbiotic Chlorella on the period length and the phase shift of circadian rhythms in Paramecium bursaria. Europ J Protistol 32(Suppl 1):102–107

    Google Scholar 

  • Morse J, Hastings JW, Roenneberg T (1994) Different phase responses of the two circadian oscillators in Gonyaulax. J Biol Rhythms 9:263–274

    Article  PubMed  CAS  Google Scholar 

  • Myohara K, Hiwatashi K (1978) Mutants of sexual maturity in Paramecium caudatum selected by erythromycin resistance. Genetics 90:227–241

    PubMed  CAS  Google Scholar 

  • Naitoh Y, Eckert R (1968) Electrical properties of Paramecium: modification by bound and free cations. Z Vergl Physiol 61:427–452

    Article  Google Scholar 

  • Nakajima K, Nakaoka Y (1989) Circadian change of photosensitivity in Paramecium bursaria. J Exp Biol 144:43–51

    Google Scholar 

  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    Article  PubMed  CAS  Google Scholar 

  • Nakaoka Y (1989) Localization of photosensitivity in Paramecium bursaria. J Comp Physiol A 165:637–641

    Article  Google Scholar 

  • Nakaoka Y, Machemer H (1990) Effects of cyclic nucleotides and intracellular Ca on voltage-activated ciliary beating in Paramecium. J Comp Physiol A 166:401–406

    Article  Google Scholar 

  • Nakaoka Y, Kinugawa K, Kurotani T (1987) Ca2+-dependent photoreceptor potential in Paramecium bursaria. J Exp Biol 131:107–115

    CAS  Google Scholar 

  • Nakaoka Y, Tokioka R, Shinozawa T, Fujita J, Usukura J (1991) Photoreception of Paramecium cilia: localization of photosensitivity and binding with anti-frog-rhodopsin IgG. J Cell Sci 99:67–72

    PubMed  CAS  Google Scholar 

  • Oka T, Nakaoka Y, Oosawa F (1986) Changes in membrane potential during adaptation to external potassium ions in Paramecium caudatum. J Exp Biol 126:111–117

    CAS  Google Scholar 

  • Pado R (1972) Spectral activity of light and phototaxis in Paramecium bursaria. Acta Protozool 11:387–393

    Google Scholar 

  • Pittendrigh CS (1981) Circadian system: General perspective. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York, pp 57–80

    Google Scholar 

  • Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Yong MW (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg BM, Morse D (1993) Two circadian oscillators in one cell. Nature 362:362–364

    Article  Google Scholar 

  • Saji M, Oosawa F (1974) Mechanism of photoaccumulation in Paramecium bursaria. J Protozool 21:556–561

    PubMed  CAS  Google Scholar 

  • Schweiger HG, Hartwig R (1986) Cellular aspects of circadian rhythms. J Cell Sci 4:181–200

    CAS  Google Scholar 

  • Siegel RW (1957) An analysis of the transformation from immaturity to maturity in Paramecium aurelia. Genetics 42:394–395

    Google Scholar 

  • Siegel RW (1961) Nuclear differentiation and transitional cellular phenotypes in the life cycle of Paramecium. Exp Cell Res 24:6–20

    Article  Google Scholar 

  • Siegel RW (1967) Genetics of ageing and the life cycle in ciliates. Symp Soc Exp Biol 21:127–148

    PubMed  CAS  Google Scholar 

  • Siegel RW, Larison LL (1960) The genetic control of mating type in Paramecium bursaria. Proc Natl Acad Sci U S A 46:344–349

    Article  PubMed  CAS  Google Scholar 

  • Sonneborn TM (1938) Mating type in Paramecium aurelia: diverse conditions for mating in different stocks; occurrence, number and interrelations of the types. Proc Am Philos Soc 79:411–434

    Google Scholar 

  • Sonneborn TM (1957) Diurnal change of mating type in Paramecium. Anat Rec 128:626

    Google Scholar 

  • Takagi Y (1974) The effect of ultraviolet irradiation on the period of immaturity in Paramecium caudatum. Zool Mag 83:96–98

    Google Scholar 

  • Takagi Y, Suzuki T, Shimada C (1987) Isolation of a Paramecium tetraurelia mutant with short clonal life-span and with novel life-cycle features. Zool Sci 4:73–80

    Google Scholar 

  • Tanaka M, Miwa I (1996) Significance of photosynthetic products of symbiotic Chlorella to establish the endosymbiosis and to express the mating reactivity rhythm in Paramecium bursaria. Zool Sci 13:685–692

    Article  CAS  Google Scholar 

  • Tanaka M, Miwa I (2000) Correlation of photosynthetic products of symbiotic Chlorella with the mating reactivity rhythms in a mutant strain of Paramecium bursaria. Zool Sci 17:735–742

    Article  CAS  Google Scholar 

  • Tokushima H, Okamoto KI, Miwa I, Nakaoka Y (1994) Correlation between circadian periods and cellular activities in Paramecium bursaria. J Comp Physiol A 175:767–772

    Article  PubMed  CAS  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  PubMed  CAS  Google Scholar 

  • Weis DS (1979) Correlation of sugar release and concanavalin A agglutinability with infectivity of symbiotic algae from Paramecium bursaria for aposymbiotic P. bursaria. J Protozool 26:117–119

    CAS  Google Scholar 

  • Zehring WA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP, Rosbash M, Hall JC (1984) P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39:369–376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to all coworkers and all students in my laboratory at Ibaraki University who have contributed to Paramecium research in the past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isoji Miwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miwa, I. (2009). Regulation of Circadian Rhythms of Paramecium bursaria by Symbiotic Chlorella Species. In: Fujishima, M. (eds) Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92677-1_4

Download citation

Publish with us

Policies and ethics