Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2009))

Abstract

Mitochondria are intracellular organelles that generate the principal source of cellular energy in the form of adenosine triphosphate (ATP). In a highly efficient process, mitochondria convert both carbohydrate and fat into high-energy phosphate compounds by a series of intermediate steps involving electron transfer. Emerging data implicate mitochondrial damage and dysfunction as critical factors in the pathogenesis of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Echtay KS (2007) Mitochondrial uncoupling proteins-what is their physiological role? Free Radic Biol Med 43: 1351–1371

    Article  PubMed  CAS  Google Scholar 

  2. Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74: 121–133

    Article  PubMed  CAS  Google Scholar 

  3. Echtay KS, Roussel D, St-Pierre J, et al (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96–99

    Article  PubMed  CAS  Google Scholar 

  4. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95: 11715–11720

    Article  PubMed  CAS  Google Scholar 

  5. Lee HC and Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 232: 592–606

    CAS  Google Scholar 

  6. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–642

    Article  PubMed  CAS  Google Scholar 

  7. Bayir H, Kagan VE (2008) Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis-there is nothing more practical than a good theory. Crit Care 12: 206

    Article  PubMed  Google Scholar 

  8. Geng Y, Hansson GK, Holme E (1992) Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 71: 1268–1276

    PubMed  CAS  Google Scholar 

  9. Simonson SG, Welty-Wolf K, Huang YT, et al (1994) Altered mitochondrial redox responses in gram negative septic shock in primates. Circ Shock 43: 34–43

    PubMed  CAS  Google Scholar 

  10. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365: 53–59

    Article  PubMed  CAS  Google Scholar 

  11. Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223

    Article  PubMed  CAS  Google Scholar 

  12. Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10: 228

    Article  PubMed  Google Scholar 

  13. Nisoli E, Clementi E, Paolucci C, et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299: 896–899

    Article  PubMed  CAS  Google Scholar 

  14. Margulis L (1971) Symbiosis and evolution. Sci Am 225: 48–57

    Article  PubMed  CAS  Google Scholar 

  15. Anderson S, Bankier AT, Barrell BG, et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    Article  PubMed  CAS  Google Scholar 

  16. Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91: 8739–8746

    Article  PubMed  CAS  Google Scholar 

  17. Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19: 28–35

    Article  PubMed  CAS  Google Scholar 

  18. Torroni A, Schurr TG, Cabell MF, et al (1993) Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet 53: 563–590

    PubMed  CAS  Google Scholar 

  19. Quintana-Murci L, Semino O, Bandelt HJ, Passarino G, McElreavey K, Santachiara-Benerecetti AS (1999) Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nat Genet 23: 437–441

    Article  PubMed  CAS  Google Scholar 

  20. Torroni A, Huoponen K, Francalacci P, et al (1996) Classification of European mtDNAs from an analysis of three European populations. Genetics 144: 1835–1850

    PubMed  CAS  Google Scholar 

  21. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303: 223–226

    Article  PubMed  CAS  Google Scholar 

  22. Amo T, Brand MD (2007) Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines. Biochem J 404: 345–351

    Article  PubMed  CAS  Google Scholar 

  23. Elson JL, Turnbull DM, Howell N (2004) Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet 74: 229–238

    Article  PubMed  CAS  Google Scholar 

  24. Kivisild T, Shen P, Wall DP, et al (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172: 373–387

    Article  PubMed  CAS  Google Scholar 

  25. Amo T, Yadava N, Oh R, Nicholls DG, Brand MD (2008) Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene 411: 69–76

    Article  PubMed  CAS  Google Scholar 

  26. Topf AL, Gilbert MT, Fleischer RC, Hoelzel AR (2007) Ancient human mtDNA genotypes from England reveal lost variation over the last millennium. Biol Lett 3: 550–553

    Article  PubMed  CAS  Google Scholar 

  27. Pyle A, Foltynie T, Tiangyou W, et al (2005) Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol 57: 564–567

    Article  PubMed  Google Scholar 

  28. van der Walt JM, Nicodemus KK, Martin ER, et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72: 804–811

    Article  PubMed  Google Scholar 

  29. De Benedictis G, Rose G, Carrieri G, et al (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. Faseb J 13: 1532–1536

    PubMed  Google Scholar 

  30. Baudouin SV, Saunders D, Tiangyou W, et al (2005) Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366: 2118–2121

    Article  PubMed  CAS  Google Scholar 

  31. Yang Y, Shou Z, Zhang P, et al (2008) Mitochondrial DNA haplogroup R predicts survival advantage in severe sepsis in the Han population. Genet Med 10: 187–192

    Article  PubMed  Google Scholar 

  32. Torroni A, Petrozzi M, D’Urbano L, et al (1997) Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet 60: 1107–1121

    PubMed  CAS  Google Scholar 

  33. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, et al (2000) Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67: 682–696

    Article  PubMed  CAS  Google Scholar 

  34. Montiel-Sosa F, Ruiz-Pesini E, Enriquez JA, et al (2006) Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene 368: 21–27

    Article  PubMed  CAS  Google Scholar 

  35. Niemi AK, Majamaa K (2005) Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 13: 965–969

    Article  PubMed  CAS  Google Scholar 

  36. Baracca A, Solaini G, Sgarbi G, et al (2005) Severe impairment of complex I-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids. Arch Neurol 62: 730–736

    Article  PubMed  Google Scholar 

  37. Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, et al (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38: 1261–1268

    Article  PubMed  CAS  Google Scholar 

  38. Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS (2004) Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36: 141–150

    Article  PubMed  CAS  Google Scholar 

  39. Crouser ED, Julian MW, Huff JE, Mandich DV, Green-Church KB (2006) A proteomic analysis of liver mitochondria during acute endotoxemia. Intensive Care Med 32: 1252–1262

    Article  PubMed  CAS  Google Scholar 

  40. Cote HC, Day AG, Heyland DK (2007) Longitudinal increases in mitochondrial DNA levels in blood cells are associated with survival in critically ill patients. Crit Care 11: R88

    Article  PubMed  Google Scholar 

  41. Haden DW, Suliman HB, Carraway MS, et al (2007) Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 176: 768–777

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pyle, A., Chinnery, P., Baudouin, S. (2009). Mitochondrial Genetics and Sepsis. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92276-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92276-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92275-9

  • Online ISBN: 978-3-540-92276-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics