Skip to main content

The Topological Fortress of Termites

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Abstract

Termites are known for building some of the most elaborate architectures observed in the animal world. We here analyse some topological properties of three dimensional networks of galleries built by termites of the genus Cubitermes. These networks are extremely sparse, in spite of the fact that there is no building cost associated with higher connectivity. In addition, more “central” vertices (in term of betweenness or degree) are preferentially localised at spatial positions far from the external nest walls (more than in a null network model calibrated to exactly the same spatial arrangement of vertices). We argue that both sparseness and the particular spatial location of “central” vertices may be adaptive, because they provide an ecological advantage for nest defence against the attacks from other insects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthonisse, J.M.: The rush in a directed graph. Technical report, Stichting Matematisch Centrum, Amsterdam (1971)

    Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex Networks: Structure and Dynamics. Physics Reports-review section of Physics Letters 424(4-5), 175–308 (2006)

    MathSciNet  Google Scholar 

  3. Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  4. Dejean, A., Fénéron, R.: Predatory Behaviour in the Ponerine Ant, Centromyrmex bequaerti: a Case of Termitolesty. Behavioural Processes 47, 125–133 (1999)

    Article  Google Scholar 

  5. Dejean, A., Durand, J.L., Bolton, B.: Ants Inhabiting Cubitermes Termitaries in African Rain Forests. Biotropica 28(4), 701–713 (1996)

    Article  Google Scholar 

  6. Desneux, J.: Les Constructions Hypogées des Apicotermes Termites de l’Afrique Tropicale. Annales du Musée Royal du Congo Belge Tervuren 17, 7–98 (1952)

    Google Scholar 

  7. Erdös, P., Rényi, A.: On Random Graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  8. Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  9. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized Shortcuts in the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)

    Article  Google Scholar 

  10. Grassé, P.P.: Termitologia, Tome 2: Fondation des Sociétés, Construction. Masson, Paris (1984)

    Google Scholar 

  11. Grassé, P.P.: Termitologia, Tome 3: Comportement - Socialité - Écologie - Evolution - Systematique Masson, Paris (1986)

    Google Scholar 

  12. Hansell, M.: Animal Architecture. Oxford University Press, USA (2005)

    Book  Google Scholar 

  13. Hölldobler, B., Wilson, E.O.: The ants. Belknap Press of Harvard University Press, Cambridge (1990)

    Book  Google Scholar 

  14. Korb, J., Linsenmair, K.E.: Ventilation of termite mounds: new results require a new model. Behavioral Ecology 11, 486–494 (2000)

    Article  Google Scholar 

  15. Lüscher, M.: Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (Haviland). Acta Trop. 12, 289–307 (1955)

    Google Scholar 

  16. Peleg, D., Schäffer, A.: Graph Spanners. Journal of Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Propp, J., Wilson, D.: How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of Algorithms 27, 170–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Theraulaz, G., Bonabeau, E.: Coordination in Distributed Building. Science 269(5224), 686–688 (1995)

    Article  Google Scholar 

  19. Theraulaz, G., Bonabeau, E., Deneubourg, J.L.: The Origin of Nest Complexity in Social Insects. Complexity 3(6), 15–25 (1998)

    Article  MATH  Google Scholar 

  20. Turner, J.S.: The Extended Organism: the Physiology of Animal-built Structures. Harvard University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perna, A., Jost, C., Valverde, S., Gautrais, J., Theraulaz, G., Kuntz, P. (2008). The Topological Fortress of Termites. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics