Skip to main content

Wireless Epidemic Spread in Dynamic Human Networks

  • Conference paper
Bio-Inspired Computing and Communication (BIOWIRE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5151))

Included in the following conference series:

Abstract

The emergence of Delay Tolerant Networks (DTNs) has culminated in a new generation of wireless networking. New communication paradigms, which use dynamic interconnectedness as people encounter each other opportunistically, lead towards a world where digital traffic flows more easily. We focus on human-to-human communication in environments that exhibit the characteristics of social networks. This paper describes our study of information flow during epidemic spread in such dynamic human networks, a topic which shares many issues with network-based epidemiology. We explore hub nodes extracted from real world connectivity traces and show their influence on the epidemic to demonstrate the characteristics of information propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaintreau, A., et al.: Impact of human mobility on the design of opportunistic forwarding algorithms. In: Proc. INFOCOM (April 2006)

    Google Scholar 

  3. Dartmouth College: A community resource for archiving wireless data at dartmouth (2007), http://crawdad.cs.dartmouth.edu/index.php

  4. Daly, E., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant manets. In: Proceedings of ACM MobiHoc (2007)

    Google Scholar 

  5. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification (2005)

    Google Scholar 

  6. Diot, C., et al.: Haggle Project (2008), http://www.haggleproject.org

  7. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)

    Article  Google Scholar 

  8. Erdos, P., Renyi, A.: On random graphs i. Mathematicae 5 (1959)

    Google Scholar 

  9. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proc. SIGCOMM (2003)

    Google Scholar 

  10. Freeman, L.C.: A set of measuring centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  11. Han, J.-D.J., Bertin, N., Hao, T., Goldberg, D.S., et al.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430 (2004)

    Google Scholar 

  12. Henderson, T., et al.: The changing usage of a mature campus-wide wireless network. In: Proc. Mobicom (2004)

    Google Scholar 

  13. Hui, P., Crowcroft, J., Yoneki, E.: BUBBLE Rap: Social Based Forwarding in Delay Tolerant Networks. In: MobiHoc (2008)

    Google Scholar 

  14. Hui, P., Yoneki, E., Chan, S., Crowcroft, J.: Distributed community detection in delay tolerant networks. In: Proc. MobiArch (2007)

    Google Scholar 

  15. Kleinberg, J.: The wireless epidemic. Nature 449(20) (2007)

    Google Scholar 

  16. Lebrun, J., Chuah, C.-N., et al.: Knowledge-based opportunistic forwarding in vehicular wireless ad-hoc networks. In: VTC 2005, pp. 2289–2293 (2005)

    Google Scholar 

  17. Leguay, J., et al.: Evaluating mobility pattern space routing for DTNs. In: Proc. INFOCOM (2006)

    Google Scholar 

  18. Leguay, J., et al.: Opportunistic content distribution in an urban setting. In: ACM CHANTS (2006)

    Google Scholar 

  19. Lindgren, A., Doria, A., Schelen, O.: Probabilistic routing in intermittently connected networks. In: Dini, P., Lorenz, P., Souza, J.N.d. (eds.) SAPIR 2004. LNCS, vol. 3126, pp. 239–254. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Newman, M.: Analysis of weighted networks. Physical Review E 70, 056131 (2004)

    Article  Google Scholar 

  21. Newman, M.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  22. Nicolai, T., Yoneki, E., Behrens, N., Kenn, H.: Exploring social context with the wireless rope. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 874–883. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. O’Neill, E., et al.: Instrumenting the city: Developing methods for observing and understanding the digital cityscape. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 315–332. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Palla, G., et al.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  25. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E. 64(066117) (2001)

    Google Scholar 

  26. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scalefree networks. Phys. Rev. Lett. 86(14) (2001)

    Google Scholar 

  27. Rahul, S.J., Shah, C., Roy, S., Brunette, W.: Data mules: Modeling a three-tier architecture for sparse sensor network. In: IEEE Workshop on Sensor Network Protocols and Applications (SNPA) (May 2003)

    Google Scholar 

  28. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  29. UCSD. Wireless topology discovery project (2004), http://sysnet.ucsd.edu/wtd/wtd.html

  30. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad-hoc networks. Technical Report CS-200006, Duke University (April 2000)

    Google Scholar 

  31. Watts, D.J.: Small Worlds – The Dynamics of Networks between Order and Randomneess. Princeton University Press, Princeton (1999)

    Google Scholar 

  32. Wenrui Zhao, M.A., Zegura, E.: A message ferrying approach for data delivery in sparse mobile ad-hoc networks. In: ACM Mobihoc (May 2004)

    Google Scholar 

  33. Winters, P.: Forecasting sales by exponentially weighted moving averages. Management Science 6, 324–342 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yoneki, E., Hui, P., Chan, S., Crowcroft, J.: A socio-aware overlay for multi-point asynchronous communication in delay tolerant networks. In: Proc. MSWiM (2007)

    Google Scholar 

  35. Yoneki, E., Hui, P., Crowcroft, J.: Visualizing Community Detection in Opportunistic Networks. In: ACM MobiCom - CHANTS (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoneki, E., Hui, P., Crowcroft, J. (2008). Wireless Epidemic Spread in Dynamic Human Networks. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds) Bio-Inspired Computing and Communication. BIOWIRE 2007. Lecture Notes in Computer Science, vol 5151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92191-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92191-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92190-5

  • Online ISBN: 978-3-540-92191-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics