Seasonal to Inter-annual Climate Prediction Using Data Mining KNN Technique

Download Book (27,217 KB) As a courtesy to our readers the eBook is provided DRM-free. However, please note that Springer uses effective methods and state-of-the art technology to detect, stop, and prosecute illegal sharing to safeguard our authors’ interests.
Download Chapter (259 KB)


The impact of seasonal to inter-annual climate prediction on society, business, agriculture and almost all aspects of human life, force the scientist to give proper attention to the matter. The last few years show tremendous achievements in this field. All systems and techniques developed so far, use the Sea Surface Temperature (SST) as the main factor, among other seasonal climatic attributes. Statistical and mathematical models are then used for further climate predictions. In this paper, we develop a system that uses the historical weather data of a region (rain, wind speed, dew point, temperature, etc.), and apply the data-mining algorithm “K-Nearest Neighbor (KNN)” for classification of these historical data into a specific time span. The k nearest time spans (k nearest neighbors) are then taken to predict the weather. Our experiments show that the system generates accurate results within reasonable time for months in advance.