Skip to main content

Transformations of Toxic Metals and Metalloids by Pseudomonas stutzeri Strain KC and its Siderophore Pyridine-2,6-bis(thiocarboxylic acid)

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

Pyridine-2,6-bis(thiocarboxylic acid)Pyridine-2,6-bis(thiocarboxylic acid) (pdtc)(pdtc) is a siderophore produced by Pseudomonas stutzeri KCPseudomonas stutzeri KC that plays a role in conditioning the bacterial environment. It serves as a siderophore in solubilizing ferric iron and other micronutrient metals, and as a thiol-containing compound, it reacts with toxic heavy metals and metalloids, reducing metals like Cr(VI), Se(IV), and Te(IV) and precipitating metals as sulfides (e.g., Hg(II), Cd(II), Pb(II), and As(III)), rendering them insoluble and less toxic. Understanding the mechanism by which bacteria use pdtc to interact with metals may contribute to our understanding of metal cycling in the biosphere, and may have potential for use in bioremediationbioremediation of heavy metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilera S, Aguilar ME, Chavez MP, Lopez-Meza JE, Pedraza-Reyes M, Campos-Garcia J, Cervantes C (2004) Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107–112

    Article  CAS  Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  Google Scholar 

  • Brandon MS, Paszczynski AJ, Korus R, Crawford RL (2003) The determination of the stability constant for the iron(II) complex of the biochelator pyridine-2,6-bis(monothiocarboxylic acid). Biodegradation 14:73–82

    Article  CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 10:209–228

    CAS  Google Scholar 

  • Budzikiewicz H (2003) Heteroaromatic monothiocarboxylic acids from Pseudomonas spp. Biodegradation 14:65–72

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chardin B, Giudici-Orticoni MT, De Luca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–321

    Article  CAS  Google Scholar 

  • Cortese MS, Paszczynski AJ, Lewis TA, Sebat JL, Borek V, Crawford RL (2002) Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. Biometals 15:103–120

    Article  CAS  Google Scholar 

  • Criddle CS, DeWitt JT, Grbic-Galic D, McCarty PL (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56:3240–3246

    CAS  Google Scholar 

  • Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol J 22:87–98

    Article  CAS  Google Scholar 

  • Diels L, DeSmet M, Hooyberghs L, Corbisier P (1999) Heavy metal bioremediation of soil. Mol Biotechnol 12:149–158

    Article  CAS  Google Scholar 

  • Diels L, van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy-metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    Article  CAS  Google Scholar 

  • Dybas MJ, Barclona M, Bezborodnikov S, Davies S, Forney L, Heuer H, Kawka O, Mayotte T, Sepulveda-Torres Ld C, Smalla C, Sneathen M, Tiedje J, Voice T, Wiggert DD, Witt ME, Criddle CS (1998) Pilot-scale evaluation of bioaugmentation for in situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611

    Article  CAS  Google Scholar 

  • Espinet P, Lorenzo C, Miguel JA (1994) Palladium complexes with the tridentate dianionic ligand pyridine-2,6-bis(thocarboxylate), pdtc. Crystal structure of (n-Bu4N)[Pd(pdtc)Br]. Inorg Chem 33:2052–2055

    Article  CAS  Google Scholar 

  • Essén SA, Johnsson A, Bylund D, Pedersen K, Lundström US (2007) Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol 73:5857–5864

    Article  CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report TE-97-01. USEPA Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA

    Google Scholar 

  • Fekete FA, Barton LL (1992) Effects of iron(III) analogs on growth and pseudobactin synthesis in a chromium-tolerant Pseudomonas isolate. Biol Met 4:211–216

    Article  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Hildebrand U, Lex J (1989) Untersuchungen zur Struktur von Co(III)-und Ni(II)-Komplexen der Pyridin-2,6-di(monothiocarbonsäure). Z Naturforsch 44b:475–480

    Google Scholar 

  • Hildebrand U, Lex J, Taraz K, Winkler S, Ockels W, Budzikiewicz H (1984) Untersuchungen zum Redox-System bis-(pyridin-2,6-dicarbothioato)-ferrat(II)/-ferrat(III). Z Naturforsch 39b:1607–1613

    Google Scholar 

  • Hildebrand U, Ockels W, Lex J, Budzikiewicz H (1983) Zur Struktur eines 1:1-Adduktes von Pyridin-2,6-dicarbothiosäure und Pyridin. Phosphorus Sulfur 16:361–364

    Article  Google Scholar 

  • Hildebrand U, Taraz K, Budzikiewicz H, Korth H, Pulverer G (1985) Dicyano-bis-(pyridin-2,6-dicarbothioato)-ferrat(II)/ferrat(III), ein weiteres eisenhaltiges Redoxsystem aus der Kulturlösung eines Pseudomonas-stammes. Z Naturforsch 40c:201–207

    Google Scholar 

  • Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69:7063–7072

    Article  CAS  Google Scholar 

  • Hu XC, Boyer GL (1996) Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048

    CAS  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  CAS  Google Scholar 

  • Leach LH, Morris JC, Lewis TA (2007) The role of the siderophore pyridine-2,3-bis(thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Biometals 20:717–726

    Article  CAS  Google Scholar 

  • Lee C-H, Lewis TA, Paszczynski AJ, Crawford RL (1999) Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261:562–566

    Article  CAS  Google Scholar 

  • Lewis TA, Leach L, Morales S, Austin PR, Hartwell HJ, Kaplan B, Forker C, Meyer JM (2004) Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 6:159–169

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  Google Scholar 

  • Long RHB, Benson SM, Tokunaga TK (1990) Selenium immobilization in a pond sediment at Kesterson Reservoir. J Environ Qual 19:302–311

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Neu MP, Johnson MT, Matonic JH, Scott BL (2001) Actinide interactions with microbial chelators: the dioxobis[pyridine-2,6-bis(monothiocarboxylato)]uranium(VI) ion. Acta Crystallogr C 57:240–242

    Article  CAS  Google Scholar 

  • Newman DK, Beveridge TJ, Morel FMM (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nyman MD, Hampden-Smith MJ, Duesler EN (1997) Synthesis, characterization, and reactivity of group 12 metal thiocarboxylates, M(SOCR)2Lut2 [M = Cd, Zn; R = CH3, C(CH3)3; Lut = 3,5-dimethylpyridine (Lutidine)]. Inorg Chem 36:2218–2224

    Article  CAS  Google Scholar 

  • Ockels W, Römer A, Budzikiewicz H (1978) An Fe(III) complex of pyridine-2,6-di(monothiocarboxylic acid) — a novel bacterial metabolic product. Tetrahedron Lett 36:3341–3342

    Article  Google Scholar 

  • Oremland RS, Steinberg NA, Presser TS, Miller LG, Hollibaugh JT (1991) In situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada. Appl Environ Microbiol 57:615–617

    Google Scholar 

  • Painter EP (1941) The chemistry and toxicity of selenium compounds with special reference to the selenium problem. Chem Rev 28:179–213

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogenity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  Google Scholar 

  • Raab A, Feldmann J (2003) Microbial transformation of metals and metalloids. Sci Prog 86:179–202

    Article  CAS  Google Scholar 

  • Sebat JL, Paszczynski AJ, Cortese MS, Crawford RL (2001) Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol 67:3934–3942

    Article  CAS  Google Scholar 

  • Stolworthy JC, Paszczynski AJ, Korus R, Crawford RL (2001) Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegradation 12:411–418

    Article  CAS  Google Scholar 

  • Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE (2001) Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47:33–40

    Article  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    CAS  Google Scholar 

  • Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in Pseudomonas aruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893

    CAS  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2007) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead, and arsenic. Biometals 20:145–158

    Article  CAS  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2006a) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl Environ Microbiol 72:3119–3129

    Article  CAS  Google Scholar 

  • Zawadzka AM, Vandecasteele FPJ, Crawford RL, Paszczynski AJ (2006b) Identification of siderophores of Pseudomonas stutzeri. Can J Microbiol 52:1164–1176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej J. Paszczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zawadzka, A.M., Paszczynski, A.J., Crawford, R.L. (2009). Transformations of Toxic Metals and Metalloids by Pseudomonas stutzeri Strain KC and its Siderophore Pyridine-2,6-bis(thiocarboxylic acid). In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_12

Download citation

Publish with us

Policies and ethics