Skip to main content

Microbial Remediation of Metals in Soils

  • Chapter
  • First Online:
Advances in Applied Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

The views expressed in this chapter do not necessarily represent the views of the United States Department of Agriculture

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry S (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodocccus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30:95–99

    Article  CAS  Google Scholar 

  • Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferroxidans. Appl Environ Microbiol 70:5177–5182

    Article  CAS  Google Scholar 

  • Amezcua-Allieri MA, Lead JR, Rodríguez-Vázquez R (2005) Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs. Chemosphere 61:484–491

    Article  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Durán A, Peraud O, Oliver G, Hill RT (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Ind Microbiol Biotechnol 26:210–215

    Article  CAS  Google Scholar 

  • Bååth E, Díaz-Raviña M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Baxter J, Cummings SP (2006) The impact of bioaugmentation on metal cyanide degradation and soil bacteria community structure. Biodegradation 17:207–217

    Article  CAS  Google Scholar 

  • Belyaeva ON, Haynes RJ, Birukova OA (2005) Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol Fertil Soils 41:85–94

    Article  CAS  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producting bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soil constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Bragato M, Tenorio JAS (2007) In-situ chemical oxidation of soil contaminated by benzene, lead and cadmium. General Poster Session: The Minerals, Metals and Materials Society Annual Meeting, Orlando FL

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Carrillo-González R, Sĭmuºnek J, Sauvé S, Adriano D (2006) Mechanisms and pathways of trace element mobility in soils. Adv Agronomy 91:111–178

    Article  CAS  Google Scholar 

  • Chang S-H, Wang K-S, Kuo C-Y, Chang C-Y, Chou C-T (2005) Remediation of metal-contaminated soil by an integrated soil washing–electrolysis process. Soil Sediment Contam 14:559–569

    Article  CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principle methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Cook SV, Chu A, Goodman RH (2002) Leachability and toxicity of hydrocarbons, metals, and salt contamination from flare pit soil. Water Air Soil Pollut 133:297–314

    Article  CAS  Google Scholar 

  • Cornu JY, Denaix L, Schneider A, Pellerin S (2007) Temporal evolution of redox processes and free Cd dynamics in a metal-contaminated soil after rewetting. Chemosphere 70:306–314

    Article  CAS  Google Scholar 

  • Culotta VC, Howard WR, Liu XF (1994) CRS5 encodes a metallothinein-like protein in Saccharomyces cerevisiae. J Biol Chem 269:25295–25302

    CAS  Google Scholar 

  • de Mora AP, Ortega-Calvo JJ, Cabrera F, Madejón E (2005) Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Appl Soil Ecol 28:125–137

    Article  Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 121–156

    Google Scholar 

  • Fetzer R, Eskelsen JM, Huston M, Gussman C, Crouse D, Helverson R (2006) Riverbank stabilization of lead contaminated soils using native plant vegetative caps. Soil Sedim Contam 15:217–230

    Article  CAS  Google Scholar 

  • Figueira EMAP, Lima AIG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    Article  CAS  Google Scholar 

  • Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    Article  CAS  Google Scholar 

  • Flury M, Frankenberger WT Jr., Jury WA (1997) Long-term depletion of selenium from Kesterson dewatered sediments. Sci Total Environ 198:259–270

    Article  Google Scholar 

  • Francis CA, Co EM, Tebo BM (2001) Enzymatic manganese(II) oxidation by a marine α-proteobacterium. Appl Environ Microbiol 67:4024–4029

    Article  CAS  Google Scholar 

  • Franz A, Burgstaller W, Muller B, Schinner F (1993) Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum. J Gen Microbiol 139:2101–2107

    CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  Google Scholar 

  • Giller KE, Wittwer E, McGrath SP (1999) Assessing risks of heavy metal toxicity in agricultural soils. Human Ecol Risk Assess 5:683–689

    Article  CAS  Google Scholar 

  • Hayes KF, Traina SJ (1998) Metal ion speciation and its significance in ecosystem health. In: Soil chemistry and ecosystem health, Special publication No. 52. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69:7063–7072

    Article  CAS  Google Scholar 

  • Hong K-J, Tokunaga S, Kajiuchi T (2002) Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49:379–387

    Article  CAS  Google Scholar 

  • Horswell J, Weitz HJ, Percival HJ, Speir TW (2006) Impact of heavy metal amended sewage sludge on forest soils as assessed by bacterial and fungal biosensors. Biol Fertil Soils 42:569–576

    Article  Google Scholar 

  • Howe A, Fung LH, Lalor G, Rattray R, Vutchkov M (2005) Elemental composition of Jamaican foods 1: a survey of five food crop categories. Environ Geochem Health 27:19–30

    Article  CAS  Google Scholar 

  • Jang M, Hwang JS, Choi SI (2007) Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere 66:8–17

    Article  CAS  Google Scholar 

  • Jarecki MK, Lal R (2005) Soil organic carbon sequestration rates in two long-term no-till experiments in Ohio. Soil Sci 170:280–291

    Article  CAS  Google Scholar 

  • Jewett SC, Duffy LK (2007) Mercury in fishes of Alaska, with emphasis on subsistence species. Sci Total Environ 387:3–27

    Article  CAS  Google Scholar 

  • Jou C-JG (2006) An efficient technology to treat heavy metal-lead-contaminated soil by microwave radiation. J Environ Manage 78:1–4

    Article  CAS  Google Scholar 

  • Jussila MM, Zhao J, Suominen L, Lindström K (2007) TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ Pollut 146:510–524

    Article  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2000

    Article  CAS  Google Scholar 

  • Kassab DM, Roane TM (2006) Differential responses of a mine tailings Pseudomonas isolate to cadmium and lead exposures. Biodegradation 17:379–387

    Article  CAS  Google Scholar 

  • Kelley ME, Brauning SE, Schoof RA, Ruby MV (2002) Assessing oral bioavailability of metals in soil. Battelle Press, Columbus, OH

    Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437

    Article  CAS  Google Scholar 

  • Kukier U, Chaney RL (2001) Amelioration of nickel phytotoxicity in muck and mineral soils. J Environ Qual 30:1949–1960

    CAS  Google Scholar 

  • Larner BL, Seen AJ, Palmer AS, Snape I (2007) A study of metal and metalloid contaminant availability in Antarctic marine sediments. Chemosphere 67:1967–1974

    Article  CAS  Google Scholar 

  • Lima AIG, Corticeiro SC, Figueira EMAP (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  Google Scholar 

  • Lortie L, Gould WD, Rajan W, McCready RGL, Cheng K-J (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044

    CAS  Google Scholar 

  • Lu W-B, Shi J-J, Wang C-H, Chang J-S (2007) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater B134:80–86

    Google Scholar 

  • Maier RM (2000) Microorganisms and organic pollutants. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic, San Diego, pp 63–402

    Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential environmental applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  Google Scholar 

  • Majewska M, Kurek E, Rogalski J (2007) Microbially mediated cadmium sorption/desorption processes in soil amended with sewage sludge. Chemosphere 67:724–730

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38:1037–1086

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Meegoda JN, Kamolpornwijit W, Vaccari DA, Ezeldin AS, Walden L, Ward WA, Noval BA, Mueller RT, Santora S (1996) Aggregates for construction from vitrified chromium contaminated soils. Engineered contaminated soils and interaction of soil geomembranes, ASCE Geotechnical Special Publication No. 59

    Google Scholar 

  • Meegoda JN, Kamolpornwijit W, Vaccari DA, Ezeldin SS, Noval BA, Mueller RT, Santora S (1999) Remediation of chromium-contaminated soils: bench-scale investigation. Pract Period Hazard Toxic Radioactive Waste Manage 3:124–131

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    Article  CAS  Google Scholar 

  • Merkle SA (2006) Engineering forest trees with heavy metal resistance genes. Silvae Genetica 55:263–268

    Google Scholar 

  • Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilisation of metals and metalloids by the microbial population of an alluvial soil. System Appl Microbiol 30:229–238

    Article  CAS  Google Scholar 

  • Mohamed ZA (2001) Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna. Water Res 35:4405–4409

    Article  CAS  Google Scholar 

  • Moreno JL, Garcia C, Landi L, Falchini L, Pietramellara G, Nannipieri P (2001) The ecological dose (EC50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biol Biochem 33:483–489

    Article  CAS  Google Scholar 

  • Morillo JA, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2006) Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Microbiol 53:189–193

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Haz Mat 85:111–125

    Article  CAS  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nehdi M, Tariq A (2007) Stabilization of sulphidic mine tailings for prevention of metal release and acid drainage using cementitious materials: a review. J Environ Eng Sci 6:423–436

    Article  CAS  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytorem 2:353–368

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy-metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900

    CAS  Google Scholar 

  • Niklin´ska M, Chodak M, Laskowski R (2006) Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl Soil Ecol 32:265–272

    Article  Google Scholar 

  • Niu H, Volesky B (2003) Characteristics of anionic metal species biosorption with waste crab shells. Hydrometallurgy 71:209–215

    Article  CAS  Google Scholar 

  • North American Commission for Environmental Cooperation (2007) Taking stock: 2004 North American pollutant releases and transfers. www.cec.org

  • Ouellet S, Bussière B, Mbonimpa M, Benzaazoua M, Aubertin M (2006) Reactivity and mineralogical evolution of an underground mine sulphidic cemented paste backfill. Miner Eng 19:407–419

    Article  CAS  Google Scholar 

  • Palmroth MRT, Koskinen PEP, Kaksonen AH, Münster U, Pichtel J, Puhakka JA (2007) Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Biodegradation 18:769–782

    Article  CAS  Google Scholar 

  • Paria S, Yuet PK (2006) Solidification-stabilization of organic and inorganic contaminants using Portland cement: a literature review. Environ Rev 14:217–255

    Article  CAS  Google Scholar 

  • Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR (2007) Arsenate detoxification in a Pseudomanoad hypertolerant to arsenic. Arch Microbiol 187:171–183

    Article  CAS  Google Scholar 

  • Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110:943–946

    CAS  Google Scholar 

  • Petruzzelli G, Barbafieri M, Bonomo L, Saponaro S, Milani A, Pedron F (2004) Bench scale evaluation of soil washing for heavy metal contaminated soil at a former manufactured gas plant site. Bull Environ Contam Toxicol 73:38–44

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological application. Biotechnol Adv 24:58–68

    Article  CAS  Google Scholar 

  • Rajendran P, Gunasekaran P (2007) Nanotechnology for bioremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer-Verlag, Berlin Heidelberg, pp 211–222

    Chapter  Google Scholar 

  • Reed BE, Carriere PC, Moore R (1996) Flushing of a Pb(II) contaminated soil using HCl, EDTA, and CaCl2. J Environ Eng 122:48–50

    Article  CAS  Google Scholar 

  • Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506

    Article  CAS  Google Scholar 

  • Renella G, Ortigoza ALR, Landi L, Nannipieri P (2003) Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (EC50). Soil Biol Biochem 35:1203–1210

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of co-contaminated soil. Appl Environ Microbiol 67:3208–3215

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (2000) Microorganisms and metal pollutants. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental Microbiology. Academic, San Diego, pp 403–423

    Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66:4585–4588

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2002) Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ Toxicol Chem 21:2075–2079

    Article  CAS  Google Scholar 

  • Sarrett G, Avoscan L, Carrière M, Collins R, Geoffroy N, Carrot F, Covès J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selinite and selenate. Appl Environ Microbiol 71:2331–2337

    Article  CAS  Google Scholar 

  • Scoble M, Klein B, Dunbar WS (2003) Mining waste: transforming mining systems for waste management. Int J Surf Min Reclam Environ 17:123–135

    Article  Google Scholar 

  • Shin M, Barrington SF, Marshal WD, Kim J-W (2005) Effect of surfactant alkyl chain length on soil cadmium desorption using surfactant/ligand systems. Chemosphere 58:735–742

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  CAS  Google Scholar 

  • Singh N, Asthana RK, Singh SP (2003) Characterization of an exopolysaccharide mutant of Nostoc spongiaeforme: Zn2+-sorption and uptake. World J Microbiol Biotechnol 19:851–857

    Article  CAS  Google Scholar 

  • Stefanowicz AM, Niklin´ska M, Laskowski R (2008) Metals affect soil bacterial and fungal functional diversity differently. Environ Toxicol Chem 27:591–598

    Article  CAS  Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    Article  CAS  Google Scholar 

  • Thayer JS (2002) Biological methylation of less-studied elements. Appl Organomet Chem 16:677–691

    Article  CAS  Google Scholar 

  • Urgun-Demirtas M, Stark B, Pagilla K (2006) Use of genetically engineered microorganisms (GEMS) for the bioremediation of contaminants. Crit Rev Biotechnol 26:145–164

    Article  CAS  Google Scholar 

  • US EPA (2004) Treatment technologies for site cleanup: annual status report (eleventh edition). EPA-542-R-03–009

    Google Scholar 

  • Vivas A, Azcón R, Biró B, Barea JM, Ruiz-Lozano JM (2003a) Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pretense L. under lead toxicity. Can J Microbiol 49:577–588

    Article  CAS  Google Scholar 

  • Vivas A, Vörös A, Biró B, Barea JM, Ruiz-Lozano JM, Azcón R (2003b) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Appl Soil Ecol 24:177–186

    Article  Google Scholar 

  • Wang JS, Wai CM (2004) Arsenic in drinking water — a global environmental problem. J Chem Educ 81:207–213

    Article  CAS  Google Scholar 

  • Watling HR (2008) The bioleaching of nickel-copper sulfides. Hydrometallurgy 91:70–88

    CAS  Google Scholar 

  • Weber KP, Gehder M, Legge RL (2008) Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. Water Res 42:180–188

    Article  CAS  Google Scholar 

  • Weitz HJ, Campbell CD, Killham K (2002) Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environ Microbiol 4:422–429

    Article  CAS  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculent for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

  • Zawadzka AM, Crawford RL, Paszczynski AJ (2007) Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic. BioMetals 20:145–158

    Article  CAS  Google Scholar 

  • Zhu Y, Zou X, Feng S, Tang H (2006) The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments: a case study of Dongpink Lake, China. Environ Geol 50:753–759

    Article  CAS  Google Scholar 

  • Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilization and demobilization. Sci Tot Environ 266:195–202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Roane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hietala, K.A., Roane, T.M. (2009). Microbial Remediation of Metals in Soils. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_11

Download citation

Publish with us

Policies and ethics