Skip to main content

Attosecond Polarization Beats

  • Chapter
  • 544 Accesses

Abstract

In Chapter 2, we have described femotosecond polarization beats in three-and four-level systems with two pump laser beams having two frequency components in each beam. The femtosecond beating comes from the frequency difference between two atomic transitions, therefore named difference frequency polarization beats (DFPB), when the two pump beams have a relative time delay. However, for a different situation with a time delay between two frequency components in each pump beam, the polarization beat signal will appear with a sum frequency of two atomic transitions, which is called sum-frequency polarization beats (SFPB). Such SFPB can result in beating signals with attosecond time scale; therefore, such SFPB technique has sometimes been called attosecond polarization beats (ASPB). Such SFPB technique can be used effectively for certain ultrafast laser spectroscopy measurements. In this chapter, we will describe how such SFPB appear in multilevel systems and how the signal intensity of the SFPB changes for different Markovian stochastic fields. Based on the phase-conjugate polarization interference between two-pathway excitations, the second-order or fourth-order Markovian stochastic correlations of the SFPB in attosecond time scale have been studied in a three-level V-type system. Field correlations have weakly influence on the SFPB signal when the lasers have narrow bandwidths. In contrast, when lasers have broadband linewidths, the SFPB signal shows the resonant-nonresonant cross correlation, and sensitivities of the SFPB signal to three Markovian stochastic models increase as the time delay is increased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkwood J C, Albrecht A C, Ulness D J, et al. Fifth-order nonlinear Raman processes in molecular liquids using quasi-cw noisy light. II. Experiment. J. Chem. Phys., 1999, 111: 272–280.

    Article  ADS  Google Scholar 

  2. Ryan R E, Bergeman T H. Hanle effect in nonmonochromatic laser-light. Phys. Rev. A, 1991, 43: 6142–6155.

    Article  ADS  Google Scholar 

  3. Chen C, Elliott D S, Hamilton M W. Two-photon absorption from the real Gaussian field. Phys. Rev. Lett., 1992, 68: 3531–3534.

    Article  ADS  Google Scholar 

  4. Walser R, Ritsch H, Zoller P, et al. Laser-niose-induced population fluctuations in 2-level systems: complex and real gaussian driving fields. Phys. Rev. A, 1992, 45: 468–476.

    Article  ADS  Google Scholar 

  5. Anderson M H, Vemuri G, Cooper J, et al. Experimental study of absorption and gain by two-level atoms in a time-delayed non-Markovian optical field. Phys. Rev. A, 1993, 47: 3202–3209.

    Article  ADS  Google Scholar 

  6. Ryan R E, Westling L A, Blumel R, et al. 2-Photon spectroscopy: a technique for characterizing diode-laser noise. Phys. Rev. A, 1995, 52: 3157–3169.

    Article  ADS  Google Scholar 

  7. Georges A T. Resonance fluorescence in markovian stochastic fields. Phys. Rev. A, 1980, 21: 2034–2049.

    Article  ADS  MathSciNet  Google Scholar 

  8. Bratfalean R, Ewart P. Spectral line shape of nonresonant four-wave mixing in Markovian stochastic fields. Phys. Rev. A, 1997, 56: 2267–2279.

    Article  ADS  Google Scholar 

  9. Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy. Nature, 2002, 419: 803–807.

    Article  ADS  Google Scholar 

  10. Zhang Y P, Kim H, Cheng C H, et al. Dissociation energies of molecular hydrogen and the hydrogen molecular ion. Phys. Rev. Lett. 92, 203003 (2004).

    Article  ADS  Google Scholar 

  11. Farooqi S M, Tong D, Krishnan S, et al. Long-range molecular resonances in a cold Rydberg gas. Phys. Rev. Lett. 91, 183002 (2003).

    Article  ADS  Google Scholar 

  12. Mossberg T W, Kachru R, Hartmann S R, et al. Echoes in gaseous media: a generalized theory of rephasing phenomena. Phys. Rev. A, 1979, 20: 1976–1996.

    Article  ADS  Google Scholar 

  13. Morita N, Yajima T. Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light. Phys. Rev. A, 1984, 30: 2525–2536.

    Article  ADS  Google Scholar 

  14. Trebino R, Gustafson E K, Siegman A E. Fourth-order partial-coherence effects in the formation of integrated-intensity gratings with pulsed light sources. J. Opt. Soc. Am. B, 1986, 3: 1295–1304.

    Article  ADS  Google Scholar 

  15. Golub J E, Mossberg T W. Studies of picosecond collisional dephasing in atomic sodium vapor using broad-bandwidth transient 4-wave-mixing. J. Opt. Soc. Am. B, 1986, 3: 554–559.

    Article  ADS  Google Scholar 

  16. Kirkwood J C, Albrecht A C. Multi-dimensional time-resolved coherent Raman six-wave mixing: a comparison of the direct and cascaded processes with femtosecond excitation and noisy light interferometry. Raman J. Spectrosc., 2000, 31: 107–124.

    Article  ADS  Google Scholar 

  17. Ulness D J, Kirkwood J C, Albrecht A C. Raman scattering from a Brownian oscillator with nonohmic Drude dissipation: Applications to continuous wave, impulsive, and noisy excitation. J. Chem. Phys., 1998, 109: 4478–4486.

    Article  ADS  Google Scholar 

  18. Ulness D J, Stimson M J, Kirkwood J C, et al. Direct observation of the resonant-non-resonant cross-term contribution to coherent Raman scattering of quasi-continuous-wave noisy light in molecular liquids. J. Raman Spectrosc., 1997, 28: 917–925.

    Article  ADS  Google Scholar 

  19. Ulness D J, Stimson M J, Kirkwood J C, et al. Interferometric down-conversion of high-frequency molecular vibrations with time-frequency-resolved coherent Raman scattering using quasi-CW noisy light: C-H stretching modes of chloroform and benzene. J. Phys. Chem., 1997, 101: 4587–4591.

    Google Scholar 

  20. Ulness D J, Albrecht A C. Four-wave mixing in a Bloch two-level system with incoherent laser light having a Lorentzian spectral density: analytic solution and a diagrammatic approach. Phys. Rev. A, 1996, 53: 1081–1095.

    Article  ADS  Google Scholar 

  21. Demott D C, Ulness D J, Albrecht A C. Femtosecond temporal probes using spectrally tailored noisy quasi-cw laser light. Phys. Rev. A, 1997, 55: 761–771.

    Article  ADS  Google Scholar 

  22. Kirkwood J C, Albrecht A C, Ulness D J, et al. Coherent Raman scattering with incoherent light for a multiply resonant mixture: a factorized time correlator diagram analysis. Phys. Rev. A, 1998, 58: 4910–4925.

    Article  ADS  Google Scholar 

  23. Kirkwood J C, Albrecht A C. Down-conversion of electronic frequencies and their dephasing dynamics: interferometric four-wave-mixing spectroscopy with broadband light. Phys. Rev. A, 2000, 61: 033802.

    Article  ADS  Google Scholar 

  24. Dugan M A, Albrecht A C. Radiation-matter oscillations and spectral line narrowing in field-correlated four-wave mixing. I. Theory. Phys. Rev. A, 1991, 43: 3877–3921.

    ADS  Google Scholar 

  25. Ulness D J. On the role of classical field time correlations in noisy light spectroscopy: color locking and a spectral filter analogy. J. Phys. Chem. A, 2003, 107: 8111–8123.

    Article  Google Scholar 

  26. Debeer D, Van Wagenen L G, Beach R, et al. Ultrafast modulation spectroscopy. Phys. Rev. Lett. 1986, 56: 1128–1131.

    Article  ADS  Google Scholar 

  27. DeBeer D, Usadi E, Hartmann S R. Attosecond beats in sodium vapor. Phys. Rev. Lett., 1988, 60: 1262–1266.

    Article  ADS  Google Scholar 

  28. Ma H, De Araujo C B. Interference between 3rd-order and 5th-order polarizations in semiconductor-doped glasses. Phys. Rev. Lett., 1993, 71: 3649.

    Article  ADS  Google Scholar 

  29. Rothenberg J E, Grischkowsky D. Observation of a 1.9-psec polarization beat. Opt. Lett., 1985, 10: 22–24.

    Article  ADS  Google Scholar 

  30. Fu P M, Mi X, Yu Z H, et al. Ultrafast modulation spectroscopy in a cascade three-level system. Phys. Rev. A, 1995, 52: 4867–4870.

    Article  ADS  Google Scholar 

  31. Fu P M, Yu Z H, Mi X, et al. Doppler-free ultrafast modulation spectroscopy with phase-conjugation geometry. Phys. Rev. A, 1994, 50: 698–708.

    Article  ADS  Google Scholar 

  32. Fu P M, Wang Y B, Jiang Q, et al. Ultrafast modulation spectroscopy in cascading three-level and four-level systems. J. Opt. Soc. Am. B, 2001, 18: 370–378.

    Article  ADS  Google Scholar 

  33. Zhang Y P, Sun L Q, Tang T T, et al. Effects of field correlation on polarization beats. Phys. Rev. A, 2000, 61: 053819.

    Article  ADS  Google Scholar 

  34. Zhang Y P, Sun L Q, Tang T T, et al. Fourth-order interference on polarization beats in a four-level system. J. Opt. Soc. Am. B, 2000, 17: 690–696.

    Article  ADS  Google Scholar 

  35. Zhang Y P, Tang T T, Sun L Q, et al. Effects of fourth-order coherence on ultrafast modulation spectroscopy. Phys. Rev. A, 2000, 61: 023809.

    Article  ADS  Google Scholar 

  36. Zhang Y P, de Araujo C B, Eyler E E. Higher-order correlation on polarization beats in Markovian stochastic fields. Phys. Rev. A, 2001, 63: 043802.

    Article  ADS  Google Scholar 

  37. Zhang Y P, Lu K Q, Li C S, et al. Correlation effects of chaotic and phase-diffusion fields on polarization beats in a V-type three-level system. J. Mod. Opt., 2001, 48: 549–564.

    ADS  Google Scholar 

  38. Zhang Y P, Gan C L, Farooqi S M, et al. Four-level polarization beats with broadband noisy light. J. Opt. Soc. Am. B, 2002, 19: 1204–1215.

    Article  ADS  Google Scholar 

  39. Zhang Y P, Hou X, Lu K Q, et al. Sixth-order correlation on Raman-enhanced polarization beats with phase-conjugation geometry. Opt. Commun., 2000, 184: 265–276.

    Article  ADS  Google Scholar 

  40. Zhang Y P, Gan C L, Lu K Q, et al. Raman-enhanced polarization beats in Markovian stochastic fields. Opt. Commun., 2002, 205: 163–186.

    Article  ADS  Google Scholar 

  41. Chen C, Yin Y Y, Elliott D S. Interference between optical transitions. Phys. Rev. Lett., 1990, 64: 507–510.

    Article  ADS  Google Scholar 

  42. Kleiman V D, Zhu L C, Allen J, et al. Coherent control over the photodissociation of CH3I. J. Chem. Phys., 1995, 103: 10800–10803.

    Article  ADS  Google Scholar 

  43. Dupont E, Corkum P B, Liu H C, et al. Phase-controlled currents in semiconductors. Phys. Rev. Lett., 1995, 74: 3596–3599.

    Article  ADS  Google Scholar 

  44. Liao P F, Bloom D M, Econmou N P. CW optical wave-front conjugation by saturated absorption in atomic sodium vapor. Appl. Phys. Lett., 1978, 32: 813–815.

    Article  ADS  Google Scholar 

  45. Zhang Y P, Gan C L, Song J P, et al. Coherent laser control in attosecond sum-frequency polarization beats using twin noisy driving fields. Phys. Rev. A, 2005, 71: 023802.

    Article  ADS  Google Scholar 

  46. Levenson M D. Introduction to Nonlinear Laser Spectroscopy. New York: Academic, 1982.

    Google Scholar 

  47. Morgner U, Kartner F X, Cho S H, et al. Sub-two-cycle pulses from a Kerrlens mode-locked Ti: sapphire laser. Opt. Lett., 1999, 24: 411–413.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Attosecond Polarization Beats. In: Multi-Wave Mixing Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89528-2_3

Download citation

Publish with us

Policies and ethics