Skip to main content

Nonlinear Analysis of Physiological Time Series

  • Chapter
  • First Online:
Advanced Biosignal Processing

Abstract

Biological systems and processes are inherently complex, nonlinear and nonstationary, and that is why nonlinear time series analysis has emerged as a novel methodology over the past few decades. The aim of this chapter is to provide a review of main approaches of nonlinear analysis (fractal analysis, chaos theory, complexity measures) in physiological research, from system modeling to methodological analysis and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H (1996) Analysis of Observed Chaotic Data. Springer -Verlag, New York

    Book  MATH  Google Scholar 

  2. Abarbanel H, Brown R and Kennel M B (1991) Variation of Lyapunov exponent on a strange attractor. J Nonlinear Sci 1:175–199

    Article  MathSciNet  MATH  Google Scholar 

  3. Abarbanel H and Kennel M B (1993) Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys Rev E 47:3057–3068

    Google Scholar 

  4. Aboy M, Hornero R, Abásolo D and Álvarez D (2006) Interpretation of the lempel-ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed Eng 53(11):2282–2288

    Article  Google Scholar 

  5. Accardo A, Affinito M, Carrozzi M and Bouquet F (1997) Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 77:339–350

    Google Scholar 

  6. Acharya U R, Kannathal N, Sing O W, Ping L Y and Chua T (2004) Heart rate analysis in normal subjects of various age groups. Biomed Eng Online 3:24

    Article  Google Scholar 

  7. Akay M, Sekine M, Tamura T, Higashi Y and Fujimoto T (2004) Fractal dynamics of body motion in post-stroke hemiplegic patients during walking. J Neural Eng, 1:111–116

    Article  Google Scholar 

  8. Al-Angari H M and Sahakian A V (2007) Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans Biomed Eng 54:1900–1904

    Google Scholar 

  9. Amaral L A N, Ivanov P Ch, Aoyagi N, Hidaka I, Tomono S, Goldberger A L, Stanley H E and Yamamoto Y (2001). Behavioral-independent features of complex heartbeat dynamics. Phys Rev Lett 86:6026–6029

    Article  Google Scholar 

  10. Amaral L A N, Bezerra Soares D J, da Silva L R et al. (2004) Power law temporal auto-correlations in day-long records of human physical activity and their alteration with disease. Europhys Lett 66(3):448

    Article  Google Scholar 

  11. Arneodo A, Grasseau G and Holschneider M (1988) Wavelet transform of multi-fractals. Phys Rev Lett 61:2281–2284

    Google Scholar 

  12. Arif M, Ohtaki Y, Nagatomi R and Inooka H (2004) Estimation of the Effect of Cadence on Gait Stability in Young and Elderly People Using Approximate Entropy Technique. Meas Sci Rev 4:29–40

    Google Scholar 

  13. Bell I and Koithan M (2006) Models for the study of whole systems. Integrat Cancer Ther 293–307

    Google Scholar 

  14. Beuter A, Glass L, Mackey M C and Titcombe M S (2003). Nonlinear Dynamics in Physiology and Medicine. Interdisciplinary Applied Mathematics, Vol. 25, Springer, New York, 2003, xxvi+434

    Google Scholar 

  15. Brandon R (1996) Reductionism versus holism versus mechanism. Concepts and Methods in Evolutionary Biology, Cambridge: Cambridge University Press, 179–204

    MATH  Google Scholar 

  16. Caldirola D, Bellodi L, Caumo A, Migliarese G, Perna G (2004) Approximate entropy of respiratory patterns in panic disorder. Am J Psychiatry 161:79–87

    Article  Google Scholar 

  17. Chen Z, Ivanov P Ch, Hu K and Stanley H E (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65: 041197

    Google Scholar 

  18. Collins J J, De Luca C J, Burrows A and Lipsitz L A (1995) Age-related changes in open-loop and closed-loop postural control mechanisms. Exp Brain Res 104:480–492

    Google Scholar 

  19. Collins J J and De Luca C J (1994) Random walking during quiet standing. Phys Rev Lett 73(5):764–767

    Article  Google Scholar 

  20. Costa M, Goldberger A L and Peng C K (2002) Multiscale entropy analysis of complex physioogic time series. Phys Rev Lett 89:068102

    Google Scholar 

  21. Cox D R and Isham V (1980) Point Processes. London, U.K.: Chapman and Hall

    Google Scholar 

  22. Cox D R and Lewis P A W (1966) The Statistical Analysis of Series of Events. New York, Wiley

    Google Scholar 

  23. Dingwell J B and Marin L C (2006) Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech 39:444–452

    Article  Google Scholar 

  24. Dingwell J B and Cusumano J P (2000) Nonlinear Time Series Analysis of Normal and Pathological Human Walking. Chaos 10(4):848–863

    Article  MATH  Google Scholar 

  25. Doyle T L A, Dugan E L, Humphries B and Newton R U (2004) Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int J Med Sci 1(1):11–20

    Article  Google Scholar 

  26. Duarte M and Zatsiorsky V M (2000) On the fractal properties of natural human standing. Neurosci Lett 283:173–176

    Article  Google Scholar 

  27. Eckmann J-P and Ruelle D (1992) Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 6:185–187

    Article  MathSciNet  Google Scholar 

  28. Eckmann J-P, Kamphorst S O, Ruelle D and Ciliberto D (1992) Lyapunov exponents from time series. Phys Rev A 34, 4971

    Google Scholar 

  29. van Emmerick R E A and van Wegen E E H (2002) On the functionalaspects of variability in postural control. Exerc Sport Sci Rev 30:177–183

    Article  Google Scholar 

  30. Elger C E, Widman G, Andrzejak R et al. (2000) Nonlinear EEG analysis and its potential role in epileptology. Epilepsia 41 Suppl 3:S34–38

    Article  Google Scholar 

  31. Esteller R, Vachtsevanos G, Echauz J and Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits Syst I: Fundam. Theory Appl 48:177–183

    Article  Google Scholar 

  32. Fraser A M and Swinney H L (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

    Article  MathSciNet  MATH  Google Scholar 

  33. Galka A (2000) Topics in Nonlinear Time Series Analysis – With Implications for EEG Analysis (Advanced Series in Nonlinear Dynamics, edited by R.S. MacKay, Vol. 14), 342 pages, World Scientific Publishing Company, Singapore; ISBN 981-02-4148-8

    Google Scholar 

  34. Ganea R, Paraschiv-Ionescu A, Salarian A et al. (2007) Kinematics and dynamic complexity of postural transitions in frail elderly subjects. Conf Proc IEEE Eng Med Biol Soc 2007, 1:6118–6121

    Google Scholar 

  35. Goldberger A L (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314

    Article  Google Scholar 

  36. Goldberger A L (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40:543–561

    Google Scholar 

  37. Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P Ch, Mark R G, Mietus J E, Moody G B, Peng C K and Stanley H E (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215–e220 [Circulation Electronic Pages http://circ.ahajournals.org/ cgi/content/full/101/23/e215]

  38. Goldberger A L, Peng C K and Lipsitz L A (2002) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23:23–26

    Article  Google Scholar 

  39. Goldberger A L (2006) Giles f. Filley lecture. Complex systems. Proc Am Thorac Soc 3:467–471

    Google Scholar 

  40. Govindan R B et al. (2007) Detrended fluctuation analysis of short datasets: An application to fetal cardiac data. Physica D 226:23–31

    Article  MathSciNet  MATH  Google Scholar 

  41. Grassberger P (1990) An optimal box-assisted algorithm for fractal dimensions. Phys Lett A 148:63–68

    Google Scholar 

  42. Grassberger P and Procaccia I (1983a) Measuring the strangeness of a strange attractors, Physica D 9:189–208

    Google Scholar 

  43. Grassberger P and Procaccia I (1983b) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591

    Google Scholar 

  44. Grassberger P, Schreiber T and Schaffrath C (1991) Non-linear time sequence analysis. Internat J Bifurcation and Chaos 1:521–547

    Google Scholar 

  45. Hausdorff J M, Peng C K, Ladin Z et al. (1995) Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J Appl Physiol 78:349–358

    Google Scholar 

  46. Hausdorff J M, Purdon P L, Peng C K et al. (1996) Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 80:1448–1457

    Google Scholar 

  47. Hausdorff J M, Mitchell S L, Firtion R, Peng C K et al. (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. J Appl Physiol 82:262–269

    Google Scholar 

  48. Hausdorff J M, Lertratanakul A, Cudkowicz M E et al. (2000) Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 88:2045–2053

    Google Scholar 

  49. Havstad J W and Ehlers C L (1989) Attractor dimension of nonstationary dynamical systems from small data sets. Phys Rev A 39(2):845–853

    Article  MathSciNet  Google Scholar 

  50. Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31:277–283

    Article  MathSciNet  MATH  Google Scholar 

  51. Ho K K, Moody G B, Peng C K et al. (1997) Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 96:842–848

    Article  Google Scholar 

  52. Hu K, Ivanov P Ch, Zhi C et al. (2001) Effects of trends on detrended fluctuation analysis. Phys Rev E 64:011114

    Google Scholar 

  53. Huikuri H V, Makikallio T H, Airaksinen K E et al. (1998) Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation 97:2031–2036

    Article  Google Scholar 

  54. Huikuri H V, Makikallio T H, Peng C K et al. (2000) Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101:47–53

    Article  Google Scholar 

  55. Ivanov P Ch, Amaral L A N, Goldberger A L et al. (1999) Multifractal in human heartbeat dynamics. Nature 399:461–465

    Article  Google Scholar 

  56. Jospin M et al. (2007) Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans Biomed Eng 54:840–846

    Article  Google Scholar 

  57. Kantelhardt J W, Koscielny-Bunde E, Rego H H A et al. (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 441–454

    Article  MATH  Google Scholar 

  58. Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin H, Bunde A and Stanley H E (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316:87–114

    Google Scholar 

  59. Kantelhardt J W, Rybski D, Zschiegner S A et al. (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A 330: 240–245

    Google Scholar 

  60. Kantz H (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156

    Article  MathSciNet  Google Scholar 

  61. Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185:77

    Google Scholar 

  62. Kantz H and Schreiber T (1997) Nonlinear Time Series Analysis, Cambridge

    MATH  Google Scholar 

  63. Kaplan D T and Glass L (1995) Understanding Nonlinear Dynamics. New York: Springer Verlag

    Google Scholar 

  64. Kaplan D T (1997) Nonlinearity and nonstationarity: the use of surrogate data in interpreting fluctuations. In: Frontiers of Blood Pressure and Heart Rate Analysis, edited by M. Di Rienzo, G. Mancia, G. Parati, A. Pedotti, and A. Zanchetti. Amsterdam: IOS

    Google Scholar 

  65. Kennel M B, Brown R, and Abarbanel H (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403–3411

    Google Scholar 

  66. Lehnertz K (1999) Non-linear time series analysis of intracranial EEG recordings in patient with epilepsy – an overview. Int J Psychophysiol 34:45–52

    Article  Google Scholar 

  67. Leistedt S et al. (2007) Characterization of the sleep EEG in acutely depressed men using detrended fluctuation analysis. Clinical Neurophysiol 118:940–950

    Article  Google Scholar 

  68. Lipsitz L A (2002) The dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci 57:B115–B125

    Article  Google Scholar 

  69. Lipsitz L A (2004) Physiological Complexity, Aging, and the Path to Frailty. Sci Aging Knowl Environ 16.pe16

    Google Scholar 

  70. Lowen S B and Teich M C (2005) Fractal-Based Point Processes. Hoboken, NJ: Wiley

    Book  Google Scholar 

  71. Lowen S B and Teich M C (1991) Doubly stochastic point process driven by fractal shot noise. Phys Rev A 43:4192–4215

    Google Scholar 

  72. Makikallio T H, Seppanen T, Airaksinen K E et al. (1997) Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 80: 779–783

    Article  Google Scholar 

  73. Makikallio T H, Ristimae T, Airaksinen K E et al. (1998) Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am J Cardiol 81:27–31

    Article  Google Scholar 

  74. Makikallio T H, Seppanen T, Niemela M et al. (1996) Abnormalities in beat-to-beat complexity of heart rate dynamics in patients with a previous myocardial infarction. J Am Coll Cardiol 28:1005–1011

    Article  Google Scholar 

  75. Makikallio T H, Huikuri H V, Hintze U et al. (2001) Fractal analysis and time and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am J Cardiol 87:178–182

    Article  Google Scholar 

  76. Mutch W A C, Graham M R, Girling L G and Brewster J F (2005) Fractal ventilation enhances respiratory sinus arrhythmia. Respir Res 6:41

    Google Scholar 

  77. Nayfeh A H and Balachandran B (1995) Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. New York: Wiley-Interscience

    Book  MATH  Google Scholar 

  78. Nolte G, Ziehe A and Muller K R (2001) Noisy robust estimates of correlation dimension and K2 entropy. Phys Rev E 64:016112

    Google Scholar 

  79. Ohashi K, Bleijenberg G, van der Werf S et al. (2004) Decreased fractal correlation in diurnal physical activity in chronic fatigue syndrome. Methods Inf Med 43:26–29

    Google Scholar 

  80. Oswiecimka P, Kwapien J and Drozdz S (2006) Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rew E 74(2): 016103–016117

    Google Scholar 

  81. Paraschiv-Ionescu A, Buchser E, Rutschmann B et al. (2008). Nonlinear analysis of the human physical activity patterns in health and disease. Phys Rev E 77:021913

    Google Scholar 

  82. Peng C K, Buldyrev S V, Havlin S et al. (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685

    Google Scholar 

  83. Peng C K, Havlin S, Stanley H E et al. (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series. Chaos 5:82–87

    Article  Google Scholar 

  84. Peng C K, Mietus J E, Liu Y, Lee C, Hausdorff J M, Stanley H E, Goldberger A L and Lipsitz L A (2002) Quantifying fractal dynamics of human respiration:age and gender effects. Ann Biomed Eng 30(5):683–692

    Google Scholar 

  85. Petrosian A (1995). Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proc IEEE Symp Computer- Based Medical Syst 212–217

    Google Scholar 

  86. Pincus S M (1991). Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301

    Google Scholar 

  87. Richman J S and Moorman J R (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    Google Scholar 

  88. Rosenstein M T, Collins J J and De Luca C J (1993) Reconstruction expansion as a geometry-based framework for choosing proper delay times Physica D 65:117

    Google Scholar 

  89. Sachs D, Lovejoy S and Schertzer D (2002) The multifractal scaling of cloud radiances from 1 M to 1 KM Fractals 10(3):253–264

    Google Scholar 

  90. Schreiber T and Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77:635–638

    Article  Google Scholar 

  91. Schreiber T and Schmitz A (2000) Surrogate time series. Physica D 142:346–382

    Google Scholar 

  92. Schreiber T (1999). Is nonlinearity evident in time series of brain electrical activity?. In: Lehnertz K et al. (Ed), Chaos in Brain? Interdisc. Workshop, World Scientific, Singapore 13–22

    Google Scholar 

  93. Schurmann T and Grassberger P (1996) Entropy estimation of symbol sequences. Chaos 6:414–427

    Article  MathSciNet  Google Scholar 

  94. Sekine M, Akay M, Tamura T et al. (2004). Fractal dynamics of body motion in patients with Parkinson’s disease. J Neural Eng 1:8–15

    Article  Google Scholar 

  95. Sevcik C (1998). A Procedure to Estimate the Fractal Dimension of Waveforms. Appeared in Complexity International 5, the article is also available at the URL: http://www.csu.edu.au/ ci/vol05/sevcik/sevcik.htm

  96. Stanley H E, Amaral L A N, Goldberger A L, Halvin S, Ivanov P Ch and Peng C.-K. (1999). Statistical physics and physiology: Monofractal and multifractal approaches. Physica A 270:309–324

    Article  Google Scholar 

  97. Stam C J (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301. doi: 10.1016/j.clinph.2005.06.011

    Article  Google Scholar 

  98. Stam C J (2006) Nonlinear brain dynamics. New York: Nova Science Publishers

    Google Scholar 

  99. Takens F (1981) Detecting Strange Attractors in Turbulence. Warwick, Lecture notes in Mathematics, v.898, Ed. D. Rand & L.-S Young, Springer, 366–381

    Google Scholar 

  100. Teich M C, Turcott R G and Lowen S B (1990) The fractal doubly stochastic Poisson point process as a model for the cochlear neural spike train. In: The mechanics and biophysics of hearing (Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR, eds), 354–361. New York: Springer

    Google Scholar 

  101. Teich M C (1992) Fractal neuronal firing patterns. In: Single Neurons Computation. edited by McKenna T, Davis J, and Zormetzer SF. Boston, MA: Academic, 589–625

    Google Scholar 

  102. Teich M C, Heneghan C, Lowen S B et al. (1997). Fractal character of the neuronal spike train in the visual system of the cat. J Opt Soc Am A 14:529–546

    Google Scholar 

  103. Theiler J (1986) Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A 34(3):2427–2432

    Article  Google Scholar 

  104. Theiler J, Eubank S, Longtin A et al. (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94

    Article  MATH  Google Scholar 

  105. Theiler J (1995) On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys Lett A 196:335–341

    Article  Google Scholar 

  106. Thurner S, Lowen S B, Feurstein M C et al. (1997). Analysis, synthesis and estimation of fractal-rate stochastic point processes. Fractals 5:565–595

    Article  MATH  Google Scholar 

  107. Torres M, Añino M, Gamero L and Gemignani M (2001) Automatic detection of slight changes in nonlinear dynamical systems using multiresolution entropy tools, Int J Bifurc Chaos 11:967–981

    Article  Google Scholar 

  108. Turcott R G and Teich M C (1996) Fractal character of the electrocardiogram: distinguishing heart-failure and normal patients. Ann Biomed Eng 24:269–293

    Article  Google Scholar 

  109. Vaillancourt D E and Newell K M (2002a) Changing complexity in human behavior and hysiology through aging and disease. Neurobiol Aging 23:1–11

    Article  Google Scholar 

  110. Vaillancourt D E and Newell K M (2002b) Complexity in aging and disease: response to commentaries. Neurobiol Aging 23:27–29

    Article  Google Scholar 

  111. Vikman S, Mäkikallio TH, Yli-Mäyry S, Pikkujämsä S et al. (1999). Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation Circulation 100, 2079–2084

    Google Scholar 

  112. Wolf A, Swift J B, Swinney H L et al. (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Google Scholar 

  113. Yates F E (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comp Model 1:49–74

    Article  Google Scholar 

  114. Yeragani V K, Radhakrishna R K, Tancer M et al. (2002) Non-linear measures of respiration: respiratory irregularity and increased chaos of respiration in patients with panic disorder. Neuropsychobiology 46:111–120

    Article  Google Scholar 

  115. Zebrowski J J, Poplawska W, Baranowski R and Buchner T (2000) Symbolic dynamics and complexity in a physiological time series. Chaos Solitons & Fractals 11:1061–1075

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anisoara Paraschiv-Ionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paraschiv-Ionescu, A., Aminian, K. (2009). Nonlinear Analysis of Physiological Time Series. In: Naït-Ali, A. (eds) Advanced Biosignal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89506-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89506-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89505-3

  • Online ISBN: 978-3-540-89506-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics