Skip to main content

Visual Evoked Potential Analysis Using Adaptive Chirplet Transform

  • Chapter
  • First Online:
Advanced Biosignal Processing

Abstract

Visual evoked potentials (VEPs) are scalp electrical signals generated in response to rapid and repetitive visual stimuli. These signals possess complex time-frequency structures and are difficult to characterize with conventional methods. In this chapter, we propose a new approach based on the adaptive chirplet transform (ACT) that can represent a complete VEP response from the transient to the steady-state portion. Our implementation involves both a non-windowed and windowed approach. The non-windowed ACT employs a coarse-refinement algorithm (MPLEM) to estimate multiple chirplets under low signal-to-noise ratio condition. We show how the chirplet parameters (i.e., time-spread, chirp rate, time-center and frequency-center) can be used to separate the transient from the steady-state portions of the response, and that as few as three chirplets are required to represent a complete VEP signal. The windowed approach is implemented by partitioning the signal into equal-length non-overlapping segments before estimating a single chirplet from each segment, resulting in significant reduction of computational time. The application of the windowed ACT to VEP analysis is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be emphasized that the term “transient VEP,” or tVEP, employed here is conceptually different from that used in traditional electrophysiological literature. It usually refers to an experimental paradigm where the potentials are evoked by visual stimuli which are sufficiently widely spaced so that the visual system can be regarded as returning to a state of rest between successive stimuli [34]. In this chapter, however, tVEP refers to the signal prior to the formation of steady-state VEP.

References

  1. Akay, M. (1998). Time-frequency and wavelets in biomedical signal processing. New York: IEEE Press.

    MATH  Google Scholar 

  2. Aunon, J. I., McGillem, C. D., & Childers, D. G. (1981). Signal processing in evoked-potential research – averaging and modeling. Crc Critical Reviews in Bioengineering, 5(4), 323–367.

    Google Scholar 

  3. Boushash, B., & Whitehouse, H. J. (1986). Seismic applications of the Wigner-Ville distribution. Paper presented at the Proceedings of IEEE International Conference on Circuits System.

    Google Scholar 

  4. Bultan, A. (1999). A four-parameter atomic decomposition of chirplets. IEEE Transactions on Signal Processing, 47(3), 731–745.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, M., Gao, X. R., Gao, S. G., & Xu, D. F. (2002). Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering, 49(10), 1181–1186.

    Article  Google Scholar 

  6. Coelho, F., Simpson, D., & Infantosi, A. (1995). Testing recruitment in the EEG under repetitive photo stimulation using frequency-domain approaches. Paper presented at the IEEE-EMBC and CMBEC, Montreal, Canada, 905–906.

    Google Scholar 

  7. Cohen, L. (1995). Time-frequency analysis. Englewood Cliffs, N.J: Prentice Hall PTR.

    Google Scholar 

  8. Cui, J. (2006). Adaptive chirplet transform for the analysis of visual evoked potentials. Unpublished PhD Dissertation, University of Toronto, Toronto.

    Google Scholar 

  9. Cui, J., & Wong, W. (2006). The adaptive chirplet transform and visual evoked potentials. IEEE Transactions on Biomedical Engineering, 53(7), 1378–1384.

    Article  Google Scholar 

  10. Cui, J., Wong, W., & Mann, S. (2005). Time-frequency analysis of visual evoked potentials using chirplet transform. Electronics Letters, 41(4), 217–218.

    Article  Google Scholar 

  11. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  12. Desmedt, J. E. (1990). Visual evoked potentials. Amsterdam, New York, Oxford: Elsevier Science Publishers B.V. (Biomedical Division).

    Google Scholar 

  13. Di Russo, F., & Spinelli, D. (2002). Effects of sustained, voluntary attention on amplitude and latency of steady-state visual evoked potential: A costs and benefits analysis. Clinical Neurophysiology, 113(11), 1771–1777.

    Article  Google Scholar 

  14. Drouiche, K. (2000). A new test for whiteness. IEEE Transactions on Signal Processing, 48(7), 1864–1871.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fricker, S. J. (1962). Narrow-band filter techniques for detection and measurement of evoked responses. Electroencephalography and Clinical Neurophysiology, 14(3), 411–421.

    Article  MathSciNet  Google Scholar 

  16. Gabor, D. (1946). Theory of communication. Journal of IEE, 93(26), 429–457.

    Google Scholar 

  17. Halliday, A. M. (1993). Evoked potentials in clinical testing. Edinburgh: Churchill Livingstone.

    Google Scholar 

  18. Harding, G. F. A. (1974). The visual evoked response. In M. J. Roper-Hall (Ed.), Advances in Ophthalmology (pp. 2–28). Basel: S Kaerger AG.

    Google Scholar 

  19. Heckenlively, J. R., & Arden, G. B. (2006). Principles and practice of clinical electrophysiology of vision (2nd ed.). Cambridge, Mass.: MIT Press.

    Google Scholar 

  20. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation and detection theory. Englewood Cliffs, N.J.: Prentice-Hall PTR.

    Google Scholar 

  21. Liavas, A. P., Moustakides, G. V., Henning, G., Psarakis, E. Z., & Husar, P. (1998). A periodogram-based method for the detection of steady-state visually evoked potentials. IEEE Transactions on Biomedical Engineering, 45(2), 242–248.

    Article  Google Scholar 

  22. Mallat, S. G., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.

    Article  MATH  Google Scholar 

  23. Mann, S., & Haykin, S. (1991, June 1991). The chirplet transform: A generalization of Gabor’s logon transform. Paper presented at the Vision Interface, Calgary, Canada.

    Google Scholar 

  24. Mann, S., & Haykin, S. (1992). Adaptive chirplet transform - An adaptive generalization of the wavelet transform. Optical Engineering, 31(6), 1243–1256.

    Article  Google Scholar 

  25. Mann, S., & Haykin, S. (1995). The chirplet transform - physical considerations. IEEE Transactions on Signal Processing, 43(11), 2745–2761.

    Article  Google Scholar 

  26. Mast, J., & Victor, J. D. (1991). Fluctuations of steady-state VEPs – Interaction of driven evoked-potentials and the EEG. Electroencephalography and Clinical Neurophysiology, 78(5), 389–401.

    Article  Google Scholar 

  27. Middendorf, M., McMillan, G., Calhoun, G., & Jones, K. S. (2000). Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 8(2), 211–214.

    Article  Google Scholar 

  28. Norcia, A. M., & Tyler, C. W. (1985). Spatial-frequency sweep VEP – visual-acuity during the 1st year of life. Vision Research, 25(10), 1399–1408.

    Article  Google Scholar 

  29. Pei, F., Pettet, M. W., & Norcia, A. M. (2002). Neural correlates of object-based attention. Journal of Vision, 2(9), 588–596.

    Article  Google Scholar 

  30. Qian, S., & Chen, D. P. (1994). Signal representation using adaptive normalized Gaussian functions. Signal Processing, 36(1), 1–11.

    Article  MATH  Google Scholar 

  31. Qian, S., Dunham, M. E., & Freeman, M. J. (1995). Transionospheric signal recognition by joint time-frequency representation. Radio Science, 30(6), 1817–1829.

    Article  Google Scholar 

  32. Regan, D. (1966). Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalography and Clinical Neurophysiology, 20(3), 238–248.

    Article  Google Scholar 

  33. Regan, D. (1972). Evoked potentials in psychology, sensory physiology and clinical medicine. London: Chapman and Hall.

    Book  Google Scholar 

  34. Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier.

    Google Scholar 

  35. Tang, Y., & Norcia, A. M. (1995). Application of adaptive filtering to steady-state evoked response. Medical & Biological Engineering & Computing, 33(3), 391–395.

    Article  Google Scholar 

  36. Van Der Tweel, L. H. (1964). Relation between psychophysics and electrophysiology of flicker. Documenta Ophthalmologica,, 18 287–304.

    Article  Google Scholar 

  37. Victor, J. D., & Mast, J. (1991). A New Statistic for Steady-State Evoked-Potentials. Electroencephalography and Clinical Neurophysiology, 78(5), 378–388.

    Article  Google Scholar 

  38. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, J., Wong, W. (2009). Visual Evoked Potential Analysis Using Adaptive Chirplet Transform. In: Naït-Ali, A. (eds) Advanced Biosignal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89506-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89506-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89505-3

  • Online ISBN: 978-3-540-89506-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics