Skip to main content

Biomechanical Modeling from In-Vivo Data

  • Chapter
Book cover Digital Human Modeling

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4650))

Abstract

Biomechanics assists in understanding the living organ functions both in normal conditions and after alterations. It plays an important role in the development of new prostheses, tools and procedures in the diagnostic, surgical and rehabilitative fields. Although experimental approaches produce direct and reliable measurements of the variables of interest, they are invasive and can alter physiological conditions and limit generalization. With the evolution of the medical and the diagnostic technologies, such as MRIs, CTs, EMGs, and EEGs, we can investigate the function of organs and tissues of a living and healthy subject without any or less invasiveness. In this Chapter, the authors survey the states-of-the-art of the biomechanics modeling methods and present a case study of the subject-specific cruciate ligaments model of the knee joint for living activities. In the model, the cross-sectional area and the reference length are estimated by means of subject-specific nuclear magnetic resonance (NMR) and 3D video-fluoroscopy respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Association of Orthopaedic Surgeons (2004)

    Google Scholar 

  2. Hefzy, M.S., Grood, E.S.: Review of Knee Models. Appl. Mech. Rev. 41(1), 1–13 (1988)

    Article  Google Scholar 

  3. Strasser, H.: Lehrbuch der Muskel und Gelenkmechanik. Springer, Berlin (1917)

    Google Scholar 

  4. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2), 153–161 (2001)

    Article  Google Scholar 

  5. Neptune, R.R., Zajac, F.E., Kautz, S.A.: Muscle mechanical work requirements during normal walking: the energetic cost of raising the body’s center-of-mass is significant. J. Biomech. 37(6), 817–825 (2004)

    Article  Google Scholar 

  6. Zavatsky, A.B., O’Connor, J.J.: A model of human knee ligaments in the sagittal plane. Part 1: Response to passive flexion. Proc. Inst. Mech. Eng. 206(3), 125–134 (1992)

    Article  Google Scholar 

  7. Bertozzi, L., Stagni, R., Fantozzi, S., Cappello, A.: Knee model sensitivity to cruciate ligaments parameters: A stability simulation study for a living subject. J. Biomech. (2007)

    Google Scholar 

  8. Blankevoort, L., Huiskes, R.: Validation of a three-dimensional model of the knee. J. Biomech. 29(7), 955–961 (1996)

    Article  Google Scholar 

  9. Li, G., Gil, J., Kanamori, A., Woo, S.L.: A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 121(6), 657–662 (1999)

    Article  Google Scholar 

  10. Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P.: A three-dimensional mathematical model of the knee-joint. J. Biomech. 13(8), 677–685 (1980)

    Article  Google Scholar 

  11. Beillas, P., Papaioannou, G., Tashman, S., Yang, K.H.: A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J. Biomech. 37(7), 1019–1030 (2004)

    Article  Google Scholar 

  12. Caruntu, D.I., Hefzy, M.S.: 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. J. Biomech. Eng. 126(1), 44–53 (2004)

    Article  Google Scholar 

  13. Moeinzadeh, M.H., Engin, A.E., Akkas, N.: Two-dimensional dynamic modelling of human knee joint. J. Biomech. 16(4), 253–264 (1983)

    Article  Google Scholar 

  14. Weber, W., Strasser, H.: Mechanics of the Human Walking Apparatus. Springer, Berlin (1991)

    Google Scholar 

  15. Goodfellow, J., O’Connor, J.: The mechanics of the knee and prosthesis design. J. Bone Joint Surg. Br. 60-B(3), 358–369 (1978)

    Google Scholar 

  16. Andriacchi, T.P., Mikosz, R.P., Hampton, S.J., Galante, J.O.: Model studies of the stiffness characteristics of the human knee joint. J. Biomech. 16(1), 23–29 (1983)

    Article  Google Scholar 

  17. Blankevoort, L., Kuiper, J.H., Huiskes, R., Grootenboer, H.J.: Articular contact in a three-dimensional model of the knee. J. Biomech. 24(11), 1019–1031 (1991)

    Article  Google Scholar 

  18. Crowninshield, R., Pope, M.H., Johnson, R.J.: An analytical model of the knee. J. Biomech. 9(6), 397–405 (1976)

    Article  Google Scholar 

  19. Essinger, J.R., Leyvraz, P.F., Heegard, J.H., Robertson, D.D.: A mathematical model for the evaluation of the behaviour during flexion of condylar-type knee prostheses. J. Biomech. 22(11-12), 1229–1241 (1989)

    Article  Google Scholar 

  20. Mommersteeg, T.J., Huiskes, R., Blankevoort, L., Kooloos, J.G., Kauer, J.M.: An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles. J. Biomech. 30(2), 139–146 (1997)

    Article  Google Scholar 

  21. Wilson, D.R., Feikes, J.D., O’Connor, J.J.: Ligaments and articular contact guide passive knee flexion. J. Biomech. 31(12), 1127–1136 (1998)

    Article  Google Scholar 

  22. Fregly, B.J., Rahman, H.A., Banks, S.A.: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J. Biomech. Eng. 127(4), 692–699 (2005)

    Article  Google Scholar 

  23. Komistek, R.D., Stiehl, J.B., Dennis, D.A., Paxson, R.D., Soutas-Little, R.W.: Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics. J. Biomech. 31(2), 185–189 (1998)

    Article  Google Scholar 

  24. Tumer, S.T., Engin, A.E.: Three-body segment dynamic model of the human knee. J. Biomech. Eng. 115(4A), 350–356 (1993)

    Article  Google Scholar 

  25. Goodfellow, J.W., Tibrewal, S.B., Sherman, K.P., O’Connor, J.J.: Unicompartmental Oxford Meniscal knee arthroplasty. J. Arthroplasty 2(1), 1–9 (1987)

    Article  Google Scholar 

  26. Goodfellow, J.W., Kershaw, C.J., Benson, M.K., O’Connor, J.J.: The Oxford Knee for unicompartmental osteoarthritis. The first 103 cases. J. Bone Joint Surg. Br. 70(5), 692–701 (1988)

    Article  Google Scholar 

  27. Murray, D.W., Goodfellow, J.W., O’Connor, J.J.: The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J. Bone Joint Surg. Br. 80(6), 983–989 (1998)

    Article  Google Scholar 

  28. Svard, U.C., Price, A.J.: Oxford medial unicompartmental knee arthroplasty. A survival analysis of an independent series. J. Bone Joint Surg. Br. 83(2), 191–194 (2001)

    Article  Google Scholar 

  29. Imran, A., O’Connor, J.J.: Computer simulation of surgical malplacement of an unconstrained unicompartimental knee prosthesis with cruciates intact. British Orthopaedics Research Society, Brighton (1996)

    Google Scholar 

  30. O’Connor, J.J., Shercliff, T., FitzPatrick, D., Biden, E., Goodfellow, J.: Mechanics of the Knee Ligaments: Structure, Function, Injury, and Repair, pp. 201–238. Raven Press, New York (1990)

    Google Scholar 

  31. Gill, H.S., O’Connor, J.J.: Biarticulating two-dimensional computer model of the human patellofemoral joint. Clin. Biomech (Bristol., Avon. ) 11(2), 81–89 (1996)

    Article  Google Scholar 

  32. Collins, J.J., O’Connor, J.J.: Muscle-ligament interactions at the knee during walking. Proc. Inst. Mech. Eng. 205(1), 11–18 (1991)

    Article  Google Scholar 

  33. Lu, T.W., Taylor, S.J., O’Connor, J.J., Walker, P.S.: Influence of muscle activity on the forces in the femur: an in vivo study. J. Biomech. 30(11-12), 1101–1106 (1997)

    Article  Google Scholar 

  34. Zavatsky, A.B., O’Connor, J.J.: A model of human knee ligaments in the sagittal plane. Part 2: Fibre recruitment under load. Proc. Inst. Mech. Eng. 206(3), 135–145 (1992)

    Article  Google Scholar 

  35. Huss, R.A., Holstein, H., O’Connor, J.J.: The effect of cartilage deformation on the laxity of the knee joint. Proc. Inst. Mech. Eng. 213(1), 19–32 (1999)

    Article  Google Scholar 

  36. Huss, R.A., Holstein, H., O’Connor, J.J.: A mathematical model of forces in the knee under isometric quadriceps contractions. Clin. Biomech (Bristol., Avon. ) 15(2), 112–122 (2000)

    Article  Google Scholar 

  37. Imran, A., Huss, R.A., Holstein, H., O’Connor, J.J.: The variation in the orientations and moment arms of the knee extensor and flexor muscle tendons with increasing muscle force: a mathematical analysis. Proc. Inst. Mech. Eng. 214(3), 277–286 (2000)

    Article  Google Scholar 

  38. Feikes, J.D., O’Connor, J.J., Zavatsky, A.B.: A constraint-based approach to modelling the mobility of the human knee joint. J. Biomech. 36(1), 125–129 (2003)

    Article  Google Scholar 

  39. Parenti-Castelli, V., Leardini, A., Di, G.R., O’Connor, J.J.: On the Modeling of Passive Motion of the Human Knee Joint by Means of Equivalent Planar and Spatial Parallel Mechanisms. Auton. Robots 16(2), 219–232 (2004)

    Article  Google Scholar 

  40. Wilson, D.R., O’Connor, J.J.: A three-dimensional geometric model of the knee for the study of joint forces in gait. Gait & Posture 5(2), 108–115 (1997)

    Article  Google Scholar 

  41. Di Gregorio, R., Parenti-Castelli, V.: A spatial mechanism with higher pairs for modelling the human knee joint. J. Biomech. Eng. 125(2), 232–237 (2003)

    Article  Google Scholar 

  42. Pandy, M.G., Shelburne, K.B.: Dependence of cruciate-ligament loading on muscle forces and external load. J. Biomech. 30(10), 1015–1024 (1997)

    Article  Google Scholar 

  43. Shelburne, K.B., Pandy, M.G.: A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J. Biomech. 30(2), 163–176 (1997)

    Article  Google Scholar 

  44. Fernandez, J.W., Pandy, M.G.: Integrating modelling and experiments to assess dynamic musculoskeletal function in humans. Exp. Physiol. 91(2), 371–382 (2006)

    Article  Google Scholar 

  45. Butler, D.L., Guan, Y., Kay, M.D., Cummings, J.F., Feder, S.M., Levy, M.S.: Location-dependent variations in the material properties of the anterior cruciate ligament. J. Biomech. 25(5), 511–518 (1992)

    Article  Google Scholar 

  46. Harner, C.D., Baek, G.H., Vogrin, T.M., Carlin, G.J., Kashiwaguchi, S., Woo, S.L.: Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7), 741–749 (1999)

    Article  Google Scholar 

  47. Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F., Leyvraz, P.F.: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J. Biomech. 31(8), 753–757 (1998)

    Article  Google Scholar 

  48. Race, A., Amis, A.A.: The mechanical properties of the two bundles of the human posterior cruciate ligament. J. Biomech. 27(1), 13–24 (1994)

    Article  Google Scholar 

  49. Momersteeg, T.J., Blankevoort, L., Huiskes, R., Kooloos, J.G., Kauer, J.M., Hendriks, J.C.: The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. J. Biomech. 28(6), 745–752 (1995)

    Article  Google Scholar 

  50. Bertozzi, L., Stagni, R., Fantozzi, S., Cappello, A.: Investigation of the Biomechanic Function of Cruciate Ligaments Using Kinematics and Geometries from a Living Subject During Step Up/Down Motor Task. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 831–838. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  51. Mommersteeg, T.J., Blankevoort, L., Huiskes, R., Kooloos, J.G., Kauer, J.M.: Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach. J. Biomech. 29(2), 151–160 (1996)

    Article  Google Scholar 

  52. Moglo, K.E., Shirazi-Adl, A.: Cruciate coupling and screw-home mechanism in passive knee joint during extension–flexion. J. Biomech. 38(5), 1075–1083 (2005)

    Article  Google Scholar 

  53. Abdel-Rahman, E., Hefzy, M.S.: A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115(4A), 357–365 (1993)

    Article  Google Scholar 

  54. Abdel-Rahman, E.M., Hefzy, M.S.: Three-dimensional dynamic behaviour of the human knee joint under impact loading. Med. Eng. Phys. 20(4), 276–290 (1998)

    Article  Google Scholar 

  55. Li, G., Sakamoto, M., Chao, E.Y.: A comparison of different methods in predicting static pressure distribution in articulating joints. J. Biomech. 30(6), 635–638 (1997)

    Article  Google Scholar 

  56. Kawai, T.: Some consideration on the finite element method. International Journal for Numerical Methods in Engineering 16(1), 81–120 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  57. Bartel, D.L., Burstein, A.H., Toda, M.D., Edwards, D.L.: The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants. J. Biomech. Eng. 107(3), 193–199 (1985)

    Article  Google Scholar 

  58. Eberhardt, A.W., Keer, L.M., Lewis, J.L., Vithoontien, V.: An analytical model of joint contact. J. Biomech. Eng. 112(4), 407–413 (1990)

    Article  Google Scholar 

  59. Pandy, M.G., Sasaki, K., Kim, S.: A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part 1: Theoretical Construct. Comput. Methods Biomech. Biomed. Engin. 1(2), 87–108 (1998)

    Article  Google Scholar 

  60. Bendjaballah, M.Z., Shirazi-Adl, A., Zukor, D.J.: Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin. Biomech (Bristol., Avon. ) 13(8), 625–633 (1998)

    Article  Google Scholar 

  61. Mesfar, W., Shirazi-Adl, A.: Biomechanics of the knee joint in flexion under various quadriceps forces. Knee 12(6), 424–434 (2005)

    Article  Google Scholar 

  62. Pandy, M.G., Zajac, F.E., Sim, E., Levine, W.S.: An optimal control model for maximum-height human jumping. J. Biomech. 23(12), 1185–1198 (1990)

    Article  Google Scholar 

  63. Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)

    Article  Google Scholar 

  64. Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123(6), 599–606 (2001)

    Article  Google Scholar 

  65. Crowninshield, R., Pope, M.H., Johnson, R., Miller, R.: The impedance of the human knee. J. Biomech. 9(8), 529–535 (1976)

    Article  Google Scholar 

  66. Pope, M.H., Crowninshield, R., Miller, R., Johnson, R.: The static and dynamic behavior of the human knee in vivo. J. Biomech. 9(7), 449–452 (1976)

    Article  Google Scholar 

  67. Fregly, B.J., Bei, Y., Sylvester, M.E.: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. J. Biomech. 36(11), 1659–1668 (2003)

    Article  Google Scholar 

  68. Shelburne, K.B., Pandy, M.G., Anderson, F.C., Torry, M.R.: Pattern of anterior cruciate ligament force in normal walking. J. Biomech. 37(6), 797–805 (2004)

    Article  Google Scholar 

  69. Zavatsky, A.B., O’Connor, J.J.: Ligament forces at the knee during isometric quadriceps contractions. Proc. Inst. Mech. Eng. 207(1), 7–18 (1993)

    Article  Google Scholar 

  70. Stagni, R., Fantozzi, S., Davinelli, M., Lannocca, M.: Comparison of knee cruciate ligaments models using kinematics from a living subject during chair rising-sitting. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036, pp. 1073–1080. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  71. Corazza, F., O’Connor, J.J., Leardini, A., Parenti, C.: Ligament fibre recruitment and forces for the anterior drawer test at the human ankle joint. J. Biomech. 36(3), 363–372 (2003)

    Article  Google Scholar 

  72. Bookstein, F.L.: Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  73. Zuffi, S., Leardini, A., Catani, F., Fantozzi, S., Cappello, A.: A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans. Med. Imaging 18(10), 981–991 (1999)

    Article  Google Scholar 

  74. Goodfellow, J., O’Connor, J.: The mechanics of the knee and prosthesis design. J. Bone Joint Surg. Br. 60(3), 358–369 (1978)

    Google Scholar 

  75. Grood, E.S., Suntay, W.J.: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105(2), 136–144 (1983)

    Article  Google Scholar 

  76. Markolf, K.L., Mensch, J.S., Amstutz, H.C.: Stiffness and laxity of the knee–the contributions of the supporting structures. A quantitative in vitro study. J. Bone Joint Surg. Am. 58(5), 583–594 (1976)

    Article  Google Scholar 

  77. Piziali, R.L., Rastegar, J.C.: Measurement of the nonlinear, coupled stiffness characteristics of the human knee. J. Biomech. 10(1), 45–51 (1977)

    Article  Google Scholar 

  78. Markolf, K.L., Graff-Radford, A., Amstutz, H.C.: In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J. Bone Joint Surg. Am. 60(5), 664–674 (1978)

    Article  Google Scholar 

  79. Mommersteeg, T.J., Huiskes, R., Blankevoort, L., Kooloos, J.G., Kauer, J.M., Maathuis, P.G.: A global verification study of a quasi-static knee model with multi-bundle ligaments. J. Biomech. 29(12), 1659–1664 (1996)

    Article  Google Scholar 

  80. Markolf, K.L., Bargar, W.L., Shoemaker, S.C., Amstutz, H.C.: The role of joint load in knee stability. J. Bone Joint Surg. Am. 63(4), 570–585 (1981)

    Article  Google Scholar 

  81. Markolf, K.L., Kochan, A., Amstutz, H.C.: Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J. Bone Joint Surg. Am. 66(2), 242–252 (1984)

    Article  Google Scholar 

  82. Shoemaker, S.C., Markolf, K.L.: Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments. J. Bone Joint Surg. Am. 67(1), 136–146 (1985)

    Article  Google Scholar 

  83. Kandel, M.J., Kapandji, I.A.: The Physiology of the Joints: Lower Limb. Churchill Livingstone, vol. 2 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bertozzi, L., Stagni, R., Fantozzi, S., Cappello, A. (2008). Biomechanical Modeling from In-Vivo Data. In: Cai, Y. (eds) Digital Human Modeling. Lecture Notes in Computer Science(), vol 4650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89430-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89430-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89429-2

  • Online ISBN: 978-3-540-89430-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics