Skip to main content

Assessment of a User’s Time Pressure and Cognitive Load on the Basis of Features of Speech

  • Chapter
  • First Online:

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

The project READY (1996-2004) approached the topic of resource-adaptive cognitive processes from a different angle than most of the other projects represented in this volume: The resources in question were the cognitive resources of computer users; the adaptation was done by the system that they were using.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wickens, C.D., Hollands, J.G. Engineering Psychology and Human Performance (3rd edn). Upper Saddle River, NJ: Prentice Hall (2000).

    Google Scholar 

  2. Wierwille, W.W. Visual and manual demands of in-car controls and displays. In Peacock, B., Karwowski, W. (Eds), Automotive Ergonomics (pp. 299–320). London: Taylor and Francis (1993).

    Google Scholar 

  3. Bernsen, N.O., Dybkjær, L. Exploring natural interaction in the car. In Proceedings of the CLASS Workshop on Natural Interactivity and Intelligent Interactive Information Representation. Verona, Italy (2001).

    Google Scholar 

  4. Salvucci, D.D. Predicting the effects of in-car interfaces on driver behavior using a cognitive architecture. In Jacko, J.A., Sears, A., Beaudouin-Lafon, M., Jacob, R.J. (Eds.), Human Factors in Computing Systems: CHI 2001 Conference Proceedings (pp. 120–127). New York: ACM (2001).

    Chapter  Google Scholar 

  5. Sawhney, N., Schmandt, C. Nomadic Radio: Speech and audio interaction for contextual messaging in nomadic environments. ACM Transactions on Computer-Human Interaction, 7:353–383 (2000).

    Article  Google Scholar 

  6. Horvitz, E. Principles of mixed-initiative user interfaces. In Williams, M.G., Altom, M.W., Ehrlich, K., Newman, W. (Eds.), Human Factors in Computing Systems: CHI 1999 Conference Proceedings (pp. 159–166). New York: ACM (1999).

    Chapter  Google Scholar 

  7. Horvitz, E., Jacobs, A., Hovel, D. Attention-sensitive alerting. In Laskey, K.B., Prade, H., (Eds.), Uncertainty in Artificial Intelligence: Proceedings of the Fifteenth Conference (pp. 305–313). San Francisco: Morgan Kaufmann (1999).

    Google Scholar 

  8. Litman, D.J., Pan, S. Designing and evaluating an adaptive spoken dialogue system. User Modeling and User-Adapted Interaction, 12(2–3):111–137 (2002).

    Article  MATH  Google Scholar 

  9. Jameson, A., Großmann-Hutter, B., March, L., Rummer, R., Bohnenberger, T., Wittig, F. When actions have consequences: Empirically based decision making for intelligent user interfaces. Knowledge-Based Systems, 14:75–92 (2001).

    Article  Google Scholar 

  10. Norman, D.A. Design rules based on analyses of human error. Communications of the ACM, 26:254–258 (1983).

    Article  Google Scholar 

  11. Kramer, A.F. Physiological metrics of mental workload: A review of recent progress. In Damos, D.L. (Ed.), Multiple-Task Performance (pp. 279–328). London: Taylor and Francis (1991).

    Google Scholar 

  12. Wilson, G.F., Eggemeier, F.T. Psychophysiological assessment of workload in multi-task environments. In Damos, D.L. (Ed.), Multiple-Task Performance (pp. 329–360). London: Taylor and Francis (1991).

    Google Scholar 

  13. Rowe, D.W., Silbert, J., Irwin, D. Heart rate variability: Indicator of user state as an aid to human-computer interaction. In Karat, C.M., Lund, A., Coutaz, J., Karat, J. (Eds.), Human Factors in Computing Systems: CHI 1998 Conference Proceedings (pp. 480–487). New York: ACM (1998).

    Chapter  Google Scholar 

  14. Granholm, E., Asarnow, R.F., Sarkin, A.J., Dykes, K.L. Pupillary responses index cognitive resource limitations (pp. 457–461). Psychophysiology, 33(4):(1996).

    Article  Google Scholar 

  15. Schultheis, H. Pupillengröße und kognitive Belastung [Pupil size and cognitive load]. Master’s thesis, Saarland University, Department of Psychology (2004).

    Google Scholar 

  16. Schultheis, H., Jameson, A. Assessing cognitive load in adaptive hypermedia systems: Physiological and behavioral methods. In Nejdl, W., De Bra, P., (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems: Proceedings of AH 2004 (pp. 225–234). Berlin: Springer (2004).

    Chapter  Google Scholar 

  17. Iqbal, S.T., Zheng, X.S., Bailey, B.P. Task-evoked pupillary response to mental workload in human-computer interaction. In Extended Abstracts for CHI 2004 (pp. 1477–1480). Vienna (2004).

    Google Scholar 

  18. Grimes, D., Tan, D.S., Hudson, S.E., Shenoy, P., Rao, R.P. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Burnett, M., Costabile, M.F., Catarci, T., de Ruyter, B., Tan, D., Czerwinski, M., Lund, A. (Eds.), Human Factors in Computing Systems: CHI 2008 Conference Proceedings (pp. 835–844). New York: ACM (2008).

    Chapter  Google Scholar 

  19. Lindmark, K. Interpreting symptoms of cognitive load and time pressure in manual input. Master’s thesis, Department of Computer Science, Saarland University, Germany (2000).

    Google Scholar 

  20. van Galen, G.P., van Huygevoort, M. Error, stress and the role of neuromotor noise in space oriented behaviour. Biological Psychology, 51:151–171 (2000).

    Article  Google Scholar 

  21. Lazarus-Mainka, G., Arnold, M. Implizite Strategien bei Doppeltätigkeit: Sprechen = Zuhören und Sortieren [Implicit strategies in dual tasks: Speaking = listening and sorting]. Zeitschrift für experimentelle und angewandte Psychologie, 34:286–300 (1987).

    Google Scholar 

  22. Kowal, S., O’Connell, D. Some temporal aspects of stories told while or after watching a film. Bulletin of the Psychonomic Society, 25:364–366 (1987).

    Google Scholar 

  23. Greene, J.O. Speech preparation processes and verbal fluency. Human Communication Research, 11:61–84 (1984).

    Article  Google Scholar 

  24. Rummer, R. Kognitive Beanspruchung beim Sprechen [Cognitive load in speaking]. Weinheim, Germany: Beltz (1996).

    Google Scholar 

  25. Goldman-Eisler, F. Psycholinguistics: Experiments in Spontaneous Speech. London: Academic Press (1968).

    Google Scholar 

  26. Butterworth, B. Evidence from pauses in speech. In Butterworth, B. (Ed.) Language Production (pp. 155–176). New York, London: Academic Press (1980).

    Google Scholar 

  27. Wiese, R. Psycholinguistische Aspekte der Sprachproduktion [Psycholinguistic Aspects of Speech Production]. PhD thesis, Hamburg (1983).

    Google Scholar 

  28. Grosjean, F., Deschamps, A. Analyse des variables temporelles du français spontané [analysis of temporal variables in spontaneous French]. Phonetica, 28:191 (1973).

    Article  Google Scholar 

  29. Deese, J. Pauses, prosody, and the demands of production in language. In Dechert, H.W., Raupach, M. (Eds.), Temporal Variables in Speech: Studies in Honour of Frieda Goldman-Eisler (pp. 69–84). The Hague: Mouton (1980).

    Google Scholar 

  30. Roßnagel, C. Übung und Hörerorientierung beim monologischen Instruieren: Zur Differenzierung einer Grundannahme [Practice and listener-orientation in the delivery of instruction monologs: Differentiation of a basic assumption]. Sprache & Kognition, 14:16–26 (1995).

    Google Scholar 

  31. Oviatt, S. Predicting spoken disfluencies during human–computer interaction. Computer Speech and Language, 9:19–35 (1995).

    Article  Google Scholar 

  32. Banse, R., Scherer, K.R. Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3):614–636 (1996).

    Article  Google Scholar 

  33. Fernandez, R., Picard, R.W. Modeling drivers’ speech under stress. In Proceedings of the ISCA Workshop on Speech and Emotions. Belfast (2000).

    Google Scholar 

  34. Berthold, A. Repräsentation und Verarbeitung sprachlicher Indikatoren für kognitive Ressourcenbeschränkungen [Representation and processing of linguistic indicators of cognitive resource limitations]. Master’s thesis, Saarland University, Department of Computer Science (1998).

    Google Scholar 

  35. Kelly, K.R., Stone, G.L. Effects of time limits on the interview behaviour of Type A and B persons within a brief counseling interview. Journal of Counseling Psychology, 29:454–459 (1982).

    Article  Google Scholar 

  36. Marx, E. Über die Wirkung von Zeitdruck auf Sprachproduktionsprozesse [The Effect of Time Pressure on Speech Production Processes]. PhD thesis, University of Münster, Germany (1984).

    Google Scholar 

  37. Healey, J., Picard, R. SmartCar: Detecting driver stress. In Proceedings of the Fifteenth International Conference on Pattern Recognition (pp. 4218–4221). Barcelona (2000).

    Google Scholar 

  38. Müller, C. Symptome von Zeitdruck und kognitiver Belastung in gesprochener Sprache: eine experimentelle Untersuchung [Symptoms of time pressure and cognitive load in speech: An experimental study]. Master’s thesis, Department of Computational Linguistics, Saarland University, Germany (2001).

    Google Scholar 

  39. Kiefer, J. Auswirkungen von Ablenkung durch gehörte Sprache und eigene Handlungen auf die Sprachproduktion [Effects on speech production of distraction through overheard speech and one’s own actions]. Master’s thesis, Department of Psychology, Saarland University, Germany (2002).

    Google Scholar 

  40. Oviatt, S. Multimodal interactive maps: Designing for human performance. Human-Computer Interaction, 12:93–129 (1997).

    Article  Google Scholar 

  41. Baber, C., Mellor, B. The effects of workload on speaking: Implications for the design of speech recognition systems. In Contemporary Ergonomics: Proceedings of the Annual Conference of the Ergonomics Society, 513–517 (1996).

    Google Scholar 

  42. Langley, P. Elements of Machine Learning. San Francisco: Morgan Kaufmann (1996).

    Google Scholar 

  43. Mitchell, T.M. Machine Learning. Boston: McGraw-Hill (1997).

    MATH  Google Scholar 

  44. Webb, G., Pazzani, M.J., Billsus, D. Machine learning for user modeling. User Modeling and User-Adapted Interaction, 11:19–29 (2001).

    Article  MATH  Google Scholar 

  45. Wittig, F., Jameson, A. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian networks. In Boutilier, C., Goldszmidt, M. (Eds.), Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference (pp. 644–652). San Francisco: Morgan Kaufmann (2000).

    Google Scholar 

  46. Jameson, A., Wittig, F. Leveraging data about users in general in the learning of individual user models. In Nebel, B. (Ed.), Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (pp. 1185–1192). San Francisco: Morgan Kaufmann (2001).

    Google Scholar 

  47. Russell, S.J., Norvig, P. Artificial Intelligence: A Modern Approach (2nd edn). Englewood Cliffs, NJ: Prentice-Hall (2003).

    Google Scholar 

  48. Schäfer, R., Weyrath, T. Assessing temporally variable user properties with dynamic Bayesian networks. In Jameson, A., Paris, C., Tasso, C. (Eds.), User Modeling: Proceedings of the Sixth International Conference, UM97 (pp. 377–388). Vienna: Springer Wien New York (1997).

    Google Scholar 

  49. Buntine, W. A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8:195–210 (1996).

    Article  Google Scholar 

  50. Müller, C., Großmann-Hutter, B., Jameson, A., Rummer, R., Wittig, F. Recognizing time pressure and cognitive load on the basis of speech: An experimental study. In Bauer, M., Gmytrasiewicz, P., Vassileva, J. (Eds.), UM2001, User Modeling: Proceedings of the Eighth International Conference (pp. 24–33). Berlin: Springer (2001).

    Google Scholar 

Download references

Acknowledgments

The research described here was supported by the German Science Foundation (DFG) in its Collaborative Research Center on Resource-Adaptive Cognitive Processes, SFB 378, Projects B2 (READY) and A2 (VEVIAG). Preparation of this manuscript was supported by the Province of Trento in its targeted research unit Prevolution (code PsychMM). The research benefited greatly from preparatory studies by André Berthold [34] and from advice by Werner Tack. Some results concerning Experiment 1 were described in a conference paper by Müller et al. [50].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Jameson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jameson, A., Kiefer, J., Müller, C., Großmann-Hutter, B., Wittig, F., Rummer, R. (2010). Assessment of a User’s Time Pressure and Cognitive Load on the Basis of Features of Speech. In: Crocker, M., Siekmann, J. (eds) Resource-Adaptive Cognitive Processes. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89408-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89408-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89407-0

  • Online ISBN: 978-3-540-89408-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics