Skip to main content

Flexible Wings and Fluid-Structure Interactions for Micro-Air Vehicles

  • Chapter
  • First Online:

Abstract

Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersect with some of the richest problems in micro-air vehicles (MAVs), including massively unsteady three-dimensional separation, transition in boundary and shear layers, vortical flows, unsteady flight environment, aeroelasticity, and adaptive control being just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. The interplay between flexible structures and aerodynamics motivated by the MAV development is discussed in this chapter. For fixed wings, membrane materials exhibit self-initiated vibration even in a steady free stream which lowers the effective angle of attack of the membrane structure compared to that of the rigid wing. For flapping wings, structural flexibility can enhance leading-edge suction via increasing the effective angle of attack, resulting in higher thrust generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Archer, R., Sapuppo, J., Betteridge, D.: Propulsion characteristics of flapping wings. Aeronautical Journal 83(825), 355–371 (1979)

    Google Scholar 

  2. Argentina, M., Mahadevan, L.: Fluid-flow-induced flutter of a flag. Proceedings of the National Academy of Science: Applied Mathematics 102(6), 1829–1834 (2005)

    Google Scholar 

  3. Breugel V.F., Teoh, E.Z., Lipson, H.: A passively stable flapping hovering micro air vehicle. In: C. Ellington (ed.) Flying Insects and Robots. Springer-Verlag, Switzerland (2008)

    Google Scholar 

  4. Chimakurthi, S.K., Tang, J., Palacios, R., Cesnik, C., Shyy, W.: Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper Number 2008-1814 Schaumburg, IL (2008)

    Google Scholar 

  5. Combes, S., Daniel, T.: Flexural stiffness in insect wings i. Scaling and the influence of wing venation. Journal of Experimental Biology 206, 2979–2987 (2003)

    Article  Google Scholar 

  6. Combes, S., Daniel, T.: Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth manduca sexta. Journal of Experimental Biology 206, 2999–3006 (2003)

    Article  Google Scholar 

  7. Cubo, J., Casinos, A.: Mechanical properties and chemical composition of avian long bones. European Journal of Morphology 38(2), 112–121 (2000)

    Article  Google Scholar 

  8. DeLaurier, J., Harris, J.: Experimental study of oscillating-wing propulsion. Journal of Aircraft 19(5), 368–373 (1982)

    Article  Google Scholar 

  9. Frampton, K., Goldfarb, M., Monopoli, D., Cveticanin, D.: Passive aeroelastic tailoring for optimal flapping wings. In: T.J. Mueller (ed.) Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, vol. 195, pp. 473–482. Progress in Astronautics and Aeronautics, AIAA New York (2001)

    Google Scholar 

  10. Freymuth, P.: Thrust generation by an airfoil in hover modes. Experiments in Fluids 9(1–2), 17–24 (1990)

    Article  Google Scholar 

  11. Galvao, R., Israeli, E., Song, A., Tian, X., Bishop, K., Swartz, S., Breuer, K.: The aerodynamics of compliant membrane wings modeled on mammalian flight mechanics. AIAA Paper Number 2006–2866 (2006).

    Google Scholar 

  12. Guglielmini, L., Blondeaux, P.: Propulsive efficiency of oscillating airfoils. European Journal of Mechanics B/Fluids 23(2), 255–278 (2004)

    Article  MATH  Google Scholar 

  13. Hamamoto, M., Ohta, Y., Hara, K., Hisada, T.: Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings. Advanced Robotics 21(1–2), 1–21 (2007)

    Article  Google Scholar 

  14. Heathcote, S., Z., W., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures 24(2), 183–199 (2008)

    Article  Google Scholar 

  15. Hepperle, M.: Aerodynamics of spar and rib structures. MH AeroTools Online Database, available at http://www.mh-aerotools.de/airfoils/ribs.htm, March 2007

  16. Ifju, P., Jenkins, A., Ettingers, S., Lian, Y., Shyy, W.: Flexible-wing based micro air vehicles. IEEE Transactions on Robotics 22, 137–146 (2002)

    Google Scholar 

  17. Jones K.D., Platzer, F.M.: Flow control using flapping wings for an efficient low-speed micro air vehicle. In: C. Ellington (ed.) Flying Insects and Robots. Springer-Verlag, Switzerland (2008)

    Google Scholar 

  18. Lian, Y.: Membrane and adaptively-shaped wings for micro air vehicles. Ph.D. thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Gainsville, Florida (2003)

    Google Scholar 

  19. Lian, Y., Shyy, W.: Numerical simulations of membrane wing aerodynamics for micro air vehicle applications. Journal of Aircraft 42(4), 865–873 (2005)

    Article  Google Scholar 

  20. Lian, Y., Shyy, W.: Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA Journal 45(7), 1501–1513 (2007)

    Article  Google Scholar 

  21. Lian, Y., Shyy, W., Viieru, D., Zhang, B.: Membrane wing aerodynamics for micro air vehicles. Progress in Aerospace Sciences 39, 425–465 (2003)

    Article  Google Scholar 

  22. Liani, E., Guo, S., Allegri, G.: Aeroelastic effect on flapping wing performance. 48th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper Number 2007-2412 Honololu, Hawaii (2007)

    Google Scholar 

  23. Meirovitch, L.: Fundamentals of Vibrations. McGraw Hill, New York (2001)

    Google Scholar 

  24. Muniappan, A., Baskar, V., Duriyanandhan, V.: Lift and thrust characteristics of flapping wing micro air vehicle (mav). 43rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2005-1055 Reno, Nevada (2005)

    Google Scholar 

  25. Ormiston, R.: Theoretical and experimental aerodynamics of the sail wing. Journal of Aircraft 8(2), 77–84 (1971)

    Article  Google Scholar 

  26. Sarkar, S., Venkatraman, K.: Numerical simulation of thrust generating flow past a pitching airfoil. Computers and Fluids 35(1), 16–42 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shimanuki, J., Machida, K.: Structure analysis of the wing of a dragonfly. Proceedings of the SPIE 5852, 671–676 (2005)

    Google Scholar 

  28. Shyy, W., Berg, M., Ljungqvist, D.: Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences 35(5), 455–505 (1999)

    Article  Google Scholar 

  29. Shyy, W., Ifju, P., Viieru, D.: Membrane wing-based micro air vehicles. Applied Mechanics Reviews 58(1–6), 283–301 (2005)

    Article  Google Scholar 

  30. Shyy, W., Lian, Y., Tang, J., Liu, H., Trizila, B., Stanford, B., Bernal, L., Cesnik, C., Friedmann, P., Ifju, P.: Computational aerodynamics of low reynolds number plunging, pitching and flexible wings for mav applications. 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2008-523 Reno, Nevada (2008)

    Google Scholar 

  31. Shyy, W., Lian, Y., Tang, J., Viieru, D., Liu, H.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press (2008)

    Google Scholar 

  32. Singh, B.: Dynamics and aeroelasticity of hover capable flapping wings: Experiments and analysis. Ph.D. thesis, Department of Aerospace Engineering, University of Maryland, College Park, Maryland (2006)

    Google Scholar 

  33. Smith, M.J.C.: The effects of flexibility on the aerodynamics of moth wings: Towards the development of flapping-wing technology. 33rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 1995-0743 Reno, Nevada (1995)

    Google Scholar 

  34. Song, A., Tian, X., Israeli, E., Galvo, R., Bishop, K., Swartz, S., Breuer, K.: The aero-mechanics of low aspect ratio compliant membrane wings, with applications to animal flight. 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2008-517 Reno, Nevada (2008)

    Google Scholar 

  35. Stanford, B., Ifju, P.: Aeroelastic tailoring of fixed membrane wings for micro air vehicles. 49th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. AIAA Paper Number 2008-1790 Schaumburg, IL (2008)

    Google Scholar 

  36. Stanford, B., Sytsma, M., Albertani, R., Viieru, D., Shyy, W., Ifju, P.: Static aeroelastic model validation of membrane micro air vehicle wings. AIAA Journal 45(12), 2828–2837 (2007)

    Article  Google Scholar 

  37. Stanford B., I.P.A.R., Shyy, W.: Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring. Progress in Aerospace Sciences 44, 258–294 (2008)

    Article  Google Scholar 

  38. Stults, J., Maple, R., Cobb, R., Parker, G.: Computational aeroelastic analysis of a micro air vehicle with experimentally determined modes. 23rd Applied Aerodynamics Conference. AIAA Paper Number 2005-4614 Toronto, Ontario, Canada (2005)

    Google Scholar 

  39. Tang, J., Chimakurthi, S.K., Palacios, R., Cesnik, C., Shyy, W.: Fluid-structure interactions of a deformable flapping wing for micro air vehicle applications. 46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper Number 2008-615 Reno, Nevada (2008)

    Google Scholar 

  40. Tang, J., Viieru, D., Shyy, W.: A study of aerodynamics of low reynolds number flexible airfoils. 37th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper Number 2007-4212 Miami, Florida (2007)

    Google Scholar 

  41. Tang, J., Zhu, K.: Numerical and experimental study of flow structure of low-aspect ratio wing. Journal of Aircraft 41(5), 1196–1201 (2004)

    Article  Google Scholar 

  42. Toomey, J., Eldredge, J.: Numerical and experimental investigation of the role of flexibility in flapping wing flight. 36th AIAA Fluid Dynamics Conference and Exhibit. AIAA Paper Number 2006-3211 San Francisco, California, USA (2006)

    Google Scholar 

  43. Waszak, R., Jenkins, N., Ifju, P.: Stability and control properties of an aeroelastic fixed wing micro aerial vehicle. AIAA Paper Number 2001-4005

    Google Scholar 

  44. Wills, D., Israeli, E., Persson, P., Drela, M., Peraire, J., Swartz, S.M., Breuer, K.S.: A computational framework for fluid structure interaction in biologically inspired flapping flight. 25th AIAA Applied Aerodynamics Conference. AIAA Paper Number 2007-3803 Miami, Florida (2007)

    Google Scholar 

  45. Wootton, J.: Support and deformability in insect wings. Journal of Zoology 193, 447–468 (1981)

    Article  Google Scholar 

  46. Wootton, R.: Springy shells, pliant plates, and minimal motors. abstracting the insect thorax to drive a micro air vehicle. In: C. Ellington (ed.) Flying Insects and Robots. Springer-Verlag, Switzerland (2008)

    Google Scholar 

  47. Zhu, Q.: Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA Journal 45(10), 2448–2457 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research’s Multidisciplinary University Research Initiative (MURI) grant and by the Michigan/AFRL (Air Force Research Laboratory)/Boeing Collaborative Center in Aeronautical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Shyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shyy, W. et al. (2009). Flexible Wings and Fluid-Structure Interactions for Micro-Air Vehicles. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics