Skip to main content

Microoptical Artificial Compound Eyes

  • Chapter
  • First Online:

Abstract

The cost–benefit ratio of miniaturized single aperture eyes underlies certain limitations, so that evolution led to the development of multi-aperture eyes in case of tiny creatures like invertebrates. Physical constraints, which also apply for the miniaturized artificial imaging systems, make this natural evolutionary path comprehensible. Shrinking down to a sub-millimeter range, the use of parallel imaging with multi-aperture systems is crucial. In this domain, microoptical design approaches and fabrication techniques are the solution of choice. This technology allows the realization of cost-efficient miniaturized imaging systems with sub-micron precision by means of photolithography and replication. The approaches proposed here are mainly inspired by insect vision in nature, although they are bound to planar substrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the following the term multi-channel imaging systems will be used.

  2. 2.

    Due to its single channel setup including one or a few lenses and at least one aperture, all aligned on a common axis, we will further call this single aperture optical system.

  3. 3.

    This ratio is called the stop number or F-number F/#.

  4. 4.

    Compared to the temporal sampling of human vision of about 25 frames per second a fly samples about 10 times faster (approx. 250 Hz) [13].

  5. 5.

    Optical axis denotes the straight line which connects the center of a single microlens with the center of the associated photoreceptor. Thus, “axially” means in direction along the optical axis.

  6. 6.

    In the following this will be called “redundant sampling.”

  7. 7.

    Even though the neural superposition type could expand activities of its owner into light conditions of dawn and dusk.

  8. 8.

    Such a setup became known as the “Gabor superlens.”

  9. 9.

    This is referred to as pitch difference Δ p.

  10. 10.

    Here, regular means that all lenslets are exactly the same.

  11. 11.

    Defined by the total number of pixels in the digital image.

  12. 12.

    Compared to the artificial apposition compound eye a segment of the individual channel is considerably larger (e.g., by a factor of ten).

  13. 13.

    A process chain which is carried out for many components in parallel on these circular carrier substrates with a diameter of up to 300 mm is called a “wafer scale” process.

  14. 14.

    Binary photomasks have apertures allowing the UV light to locally expose the underlying polymer and opaque regions that block UV light.

References

  1. Barlow, H.B.: The size of ommatidia in apposition eyes. Journal of Experimental Biology 29, 667–674 (1952)

    Google Scholar 

  2. Borrelli, N.F., Bellman, R.H., Durbin, J.A., Lama, W.: Imaging and radiometric properties of microlens arrays. Applied Optics 30(25), 3633–3642 (1991)

    Article  Google Scholar 

  3. Brückner, A., Duparré, J., Dannberg, P., Bräuer, A., Tünnermann, A.: Artificial neural superposition eye. Optics Express 15(19), 11,922–11,933 (2007)

    Google Scholar 

  4. Dannberg, P., Mann, G., Wagner, L., Bräuer, A.: Polymer UV-molding for micro-optical systems and O/E- integration.In: S.H. Lee, E.G. Johnson (eds.) Proc. of Micromachining for Micro–Optics, vol. SPIE 4179, 137–145 (2000)

    Google Scholar 

  5. Duparré, J., Dannberg, P., Schreiber, P., Bräuer, A., Tünnermann, A.: Artificial apposition compound eye fabricated by micro-optics technology. Applied Optics 43(22), 4303–4310 (2004)

    Article  Google Scholar 

  6. Duparré, J., Dannberg, P., Schreiber, P., Bräuer, A., Tünnermann, A.: Thin compound eye camera. Applied Optics 44(15), 2949–2956 (2005)

    Article  Google Scholar 

  7. Duparré, J., Schreiber, P., Matthes, A., Pshenay-Severin, E., Bräuer, A., Tünnermann, A., Völkel, R., Eisner, M., Scharf, T.: Microoptical telescope compound eye. Optics Express 13(3), 889–903 (2005)

    Article  Google Scholar 

  8. Duparré, J., Wippermann, F., Dannberg, P., Reimann, A.: Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Optics Express 13(26), 10,539–10,551 (2005)

    Google Scholar 

  9. Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions: Biological Sciences. The Royalty Society is the publisher, see: http://www.jstor.org/pss/57060. Series B 337, 283–294 (1992)

    Article  Google Scholar 

  10. Gabor, D.: Improvements in or relating to optical systems composed of lenticules. Pat. UK 541,753 (1940)

    Google Scholar 

  11. Goetz, K.G.: Die optischen Uebertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965)

    Article  Google Scholar 

  12. Hamanaka, K., Koshi, H.: An artificial compound eye using a microlens array and its application to scale-invariant processing. Optical Review 3(4), 264–268 (1996)

    Article  Google Scholar 

  13. Hardie, R.: Functional organization of the fly retina. Progress in Sensory Physiology 5, 1–79 (1985)

    MathSciNet  Google Scholar 

  14. Hembd-Sölner, C., Stevens, R.F., Hutley, M.C.: Imaging properties of the Gabor superlens. Journal of Optics A: Pure and Applied Optics. 1, 94–102 (1999)

    Article  Google Scholar 

  15. Horridge, G.A.: The compound eye of insects. Scientific American 237, 108–120 (1977)

    Google Scholar 

  16. Horridge, G.A.: The separation of visual axes in apposition compound eyes. Philosophical transactions of the Royal Society of London. Series B 285, 1–59 (1978)

    Article  Google Scholar 

  17. Hoshino, K., Mura, F., Shimoyama, I.: A One–chip Scanning Retina with an Integrated Micromechanical Scanning Actuator. Journal of Microelectromechanical System 10(4), 492–497 (2001)

    Article  Google Scholar 

  18. Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, J.U., Fröhlich, L., Buestrich, R., Popall, M., Streppel, U., Dannberg, P., Wächter, C., Bräuer, A.: Inorganic-Organic Hybrid Materials for Application in Optical Devices. Thin Solid Films 442, 194–200 (2003)

    Article  Google Scholar 

  19. Hugle, W.B., Daendliker, R., Herzig, H.P.: Lens array photolithography. Pat. US 8,114,732 (1993)

    Google Scholar 

  20. Hutley, M.C.: Integral photography, superlenses and the moiré magnifier. In: M.C. Hutley (ed.) Digest of Top. Meet. on Microlens Arrays at NPL, Teddington, vol. EOS 2, pp. 72–75 (1993)

    Google Scholar 

  21. Jeong, K., Kim, J., Lee, L.P.: Polymeric synthesis of biomimetic artificial compound eyes. Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 05), pp. 1110–1114 (2005)

    Google Scholar 

  22. Kamal, H., Völkel, R., Alda, J.: Properties of moiré magnifiers. Optical Engineering 37(11), 3007–3014 (1998)

    Article  Google Scholar 

  23. Kawazu, M., Ogura, Y.: Application of gradient-index fiber arrays to copying machines. Applied Optics 19(7), 1105–1112 (1980)

    Article  Google Scholar 

  24. Kirschfeld, K.: The resolution of lens and compound eyes. Neural Principles in Vision pp. 354–370 (1976)

    Google Scholar 

  25. Kirschfeld, K., Franceschini, N.: Optical characteristics of ommatidia in the complex eye of musca. Kybernetik 5, 47–52 (1968)

    Article  Google Scholar 

  26. Kitamura, Y., Shogenji, R., Yamada, K., Miyatake, S., Miyamoto, M., Morimoto, T., Masaki, Y., Kondou, N., Miyazaki, D., Tanida, J., Ichioka, Y.: Reconstruction of a high–resolution image on a compound–eye image–capturing system. Applied Optics 43(8), 1719–1727 (2004)

    Article  Google Scholar 

  27. Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    Article  Google Scholar 

  28. Land, M.F.: Compound eyes: Old and new optical mechanisms. Nature 287, 681–686 (1980)

    Article  Google Scholar 

  29. Land, M.F.: Variations in Structure and Design of Compound Eyes. In: D. Stavenga, R.C. Hardie (eds.) Facets of Vision, Chap. 5, pp. 90–111. Springer (1989)

    Google Scholar 

  30. Land, M.F., Burton, F., Meyer-Rochow, V.: The Optical Geometry of Euphausiid Eyes. Journal of Comparative Physiology A 130(1), 49–62 (1979)

    Article  Google Scholar 

  31. Land, M.F., Nilsson, D.E.: Animal Eyes. Oxford Animal Biology Series. Oxford University Press, Oxford (2002)

    Google Scholar 

  32. Lee, L.P., Szema, R.: Inspirations from biological optics for advanced photonic systems. Science 310(5751), 1148–1150 (2005)

    Article  Google Scholar 

  33. Lohmann, A.W.: Scaling laws for lens systems. Applied Optics 28(23), 4996–4998 (1989)

    Article  Google Scholar 

  34. McIntyre, P., Caveney, S.: Graded index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philosophical Transactions of the Royal Society of London. Series B 311, 237–269 (1985)

    Article  Google Scholar 

  35. Nakayama, K.: Biological image motion processing: a review. Vision Research 25(5), 625–660 (1985)

    MathSciNet  Google Scholar 

  36. Ogata, S., Ishida, J., Sasano, T.: Optical sensor array in an artificial compound eye. Optical Engineering 33(11), 3649–3655 (1994)

    Article  Google Scholar 

  37. Popovich, Z.D., Sprague, R.A., Conell, G.A.N.: Technique for monolithic fabrication of microlens arrays. Applied Optics 27(7), 1281–1284 (1988)

    Article  Google Scholar 

  38. Radtke, D., Duparré, J., Zeitner, U., Tünnermann, A.: Laser lithographic fabrication and characterization of a spherical artificial compound eye. Optics Express 15, 3067–3077 (2007)

    Article  Google Scholar 

  39. Sanders, J.S. (ed.): Selected Papers on Natural and Artificial Compound Eye Sensors, 122 edn. SPIE Milestone Series. SPIE Optical Engineering Press, Bellingham (1996)

    Google Scholar 

  40. Sanders, J.S., Halford, C.E.: Design and analysis of apposition compound eye optical sensors. Optical Engineering 34(1), 222–235 (1995)

    Article  Google Scholar 

  41. Smith, W.J.: Modern Optical Engineering: The Design of Optical Systems, 2 edn. McGraw–Hill, New York (1990)

    Google Scholar 

  42. Snyder, A.W.: Physics of Vision in Compound Eyes. Handbook of sensory physiology, pp. 225–313. Springer (1977)

    Google Scholar 

  43. Snyder, A.W., Stavenga, D.G., Laughlin, S.B.: Spatial Information Capacity of Compound Eyes. Journal of Comparative Physiology A 116, 183–207 (1977)

    Article  Google Scholar 

  44. Stevens, R.F.: Optical inspection of periodic structures using lens arrays and moiré magnification. Imaging Science Journal 47, 173–179 (1999)

    Google Scholar 

  45. Thorson, J.: Small-signal analysis of a visual reflex in the locust. Kybernetik 3(2), 41–66 (1966)

    Article  Google Scholar 

  46. Völkel, R., Eisner, M., Weible, K.J.: Miniaturized imaging systems. Microelectronic Engineering 6768, 461–472 (2003)

    Article  Google Scholar 

  47. Völkel, R., Wallstab, S.: Flachbauendes Bilderfassungssystem. Pat. DE 199 17 890A1 (1999)

    Google Scholar 

  48. Wippermann, F., Duparré, J., Schreiber, P., Dannberg, P.: Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective. In: L. Mazuray, R. Wartmann (eds.) Proceedings of Optical Design and Engineering II, vol. 5962, pp. 59,622C–1–59,622C–11 (2005)

    Google Scholar 

  49. Yamada, K., Tanida, J., Yu, W., Miyatake, S., Ishida, K., Miyazaki, D., Ichioka, Y.: Fabrication off diffractive microlens array for opto-electronic hybrid information system. Proceedings of Diffractive Optics’ 99, pp. 52–53. EOS (1999)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Sylke Kleinle, Andre Matthes, Antje Oelschläger, and Simone Thau from the Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena, for their contributions to the fabrication of the various types of artificial apposition compound eye objectives using microoptics technology. Special thanks is dedicated to Reinhard Völkel from SUSS MicroOptics SA (Neuchâtel, Switzerland) for his inspiring previous work and helpful discussions about bio-inspired imaging. The experience of Martin Eisner (also SUSS MicroOptics) in aligned stacking of microlens array wafers finally led to the realization of the cluster eye. We are furthermore very thankful for the help we got from our colleagues from the Institute of Microtechnology (IMT) of the University of Neuchâtel, Switzerland, especially Toralf Scharf who took very important steps in the fabrication of the lens- and aperture arrays of the cluster eye. The presented work was partly funded by the German Federal Ministry of Education and Research (BMBF) within the project “Extremely compact imaging systems for automotive applications” (FKZ: 13N8796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Brückner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brückner, A., Duparré, J., Wippermann, F., Dannberg, P., Bräuer, A. (2009). Microoptical Artificial Compound Eyes. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics