Skip to main content

On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5106))

Included in the following conference series:

Abstract

We consider a quantum polynomial-time algorithm which solves the discrete logarithm problem for points on elliptic curves over GF(2m). We improve over earlier algorithms by constructing an efficient circuit for multiplying elements of binary finite fields and by representing elliptic curve points using a technique based on projective coordinates. The depth of our proposed implementation is O(m 2), which is an improvement over the previous bound of O(m 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. IEEE Symposium on Foundations of Computer Science 41, 526–536 (2000)

    Article  MathSciNet  Google Scholar 

  5. Meter, R.V., Itoh, K.M.: Fast quantum modular exponentiation. Physical Review A 71, 052320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Certicom. Certicom announces elliptic curve cryptography challenge winner. Certicom press release (2004)

    Google Scholar 

  7. NSA Suite B Factsheet, http://www.nsa.gov/ia/industry/crypto_suite_b.cfm

  8. Agnew, G.B., Mullin, R.C., Vanstone, S.A.: An implementation of elliptic curve cryptosystems over GF(2155). IEEE Journal on Selected Areas in Communications 11(5), 804–813 (1993)

    Article  Google Scholar 

  9. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Information and Computation 3, 317–344 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Jozsa, R.: Quantum algorithms and the Fourier transform. Proc. R. Soc. Lond. A 454, 323–337 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beauregard, S., Brassard, G., Fernandez, J.M.: Quantum arithmetic on Galois fields. arXiv:quant-ph/0301163 (2003)

    Google Scholar 

  12. Mastrovito, E.D.: VLSI designs for multiplication over finite fields GF(2m). In: Proceedings of the Sixth Symposium on Applied Algebra, Algebraic Algorithms, and Error Correcting Codes, vol. 6, pp. 297–309 (1988)

    Google Scholar 

  13. Toffoli, T.: Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science (1980)

    Google Scholar 

  14. Pradhan, D.K.: A theory of Galois switching functions. IEEE Transactions on Computers 27, 239–248 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reyhani-Masoleh, A., Hasan, M.A.: Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m). IEEE Transactions on Computers 53, 945–959 (2004)

    Article  Google Scholar 

  16. Mastrovito, E.D.: VLSI Architectures for Computation in Galois Fields. PhD Thesis, Linkoping University, Linkoping, Sweden (1991)

    Google Scholar 

  17. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39, 1639–1646 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maslov, D.: Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite neighbor quantum architectures. Physical Review A 76, 052310 (2007)

    Article  Google Scholar 

  19. Kaye, P.: Optimized quantum implementation of elliptic curve arithmetic over binary fields. Quantum Information and Computation 5, 474–491 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Hankerson, D., López Hernandez, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Proceedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems, vol. 2, pp. 1–24 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K. (2008). On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography. In: Kawano, Y., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2008. Lecture Notes in Computer Science, vol 5106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89304-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89304-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89303-5

  • Online ISBN: 978-3-540-89304-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics