Skip to main content

Critical States of Nuclear Power Plant Reactors and Bilinear Modeling

  • Chapter
Optimization in the Energy Industry

Part of the book series: Energy Systems ((ENERGY))

  • 2302 Accesses

Summary

We present a new system methodology for modeling of nonlinear processes in nuclear power plant cores. This methodology makes use of a variety of different approaches from different mathematical fields. The problem of modeling critical states is reduced to a bilinear subproblem. A scheme which provides stable parameter identification and adaptive control for the nuclear nuclear power plant described by the bilinear differential equation is presented. Abnormal events are found via a system-theoretical approach. Transitions to critical states can be detected by bilinear analysis of observed characteristics and by optimization of sensory measurements. Latent conditions and critical parameters in the reactor core are estimated trough a bilinear modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Arnold. Singularities of smooth mappings. Uspekhi Mat. Nauk., 23(1):3–44, 1968.

    Google Scholar 

  2. D. Bell and S. Glesston. Theory of nuclear reactors. Moscow, Atomizdat, 1974.

    Google Scholar 

  3. T. Bose and M. Chen. Conjugate gradient method in adaptive bilinear filtering. IEEE Trans. Signal Process., 43:349–355, 1995.

    Article  Google Scholar 

  4. R. Brockett. System theory of group manifolds and coset spaces. SIAM J. Contr., 10:265–284, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Chitkara and J. Weisman. Equilibrium approach to optimal in-core fuel management for pressurized water reactors. Nucl. Technol., 24(1):33–49, 1974.

    Google Scholar 

  6. F. D'Auria, B. Gabaraev, S. Soloviev, O. Novoselsky, A. Moskalev, E. Uspuras, G. M. Galassi, C. Parisi, A. Petrov, V. Radkevich, L. Parafilo, and D. Kryuchkov. Deterministic accident next term analysis for RBMK. Nucl. Eng. Des., 238(4):975–1001, 2008.

    Article  Google Scholar 

  7. E. De Klerk, C. Roos, T. Terlaky, H. T. Illés, I. A. J. De Jong, J. Valkó, and J. E. Hoogenboom. Optimization of nuclear reactor reloading patterns. Ann. Oper. Res., 69(0):65–84, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Fnaiech, L. Ljung, and Fliess M. Hoogenboom. Recursive identifcation of bilinear systems. Int. J. Control, 45(2):453–470, 1987.

    Article  MATH  Google Scholar 

  9. R. R. Fullwood and R. E. Hall. Probabilistic risk assessment in the nuclear power industry: fundamentals and applications. Butterworth-Heinemann, New York, 1988.

    Google Scholar 

  10. V. Goldin, G. Pestriakova, Y. Troishchev, and E. Aristova. Neutron and nuclear regime with self-organisation in reactor with the hard spectrum and carbide fuel. Math. Model., 14(1):27–39, 2002.

    Google Scholar 

  11. C. S. Gordelier. Nuclear energy risks and benefits in perspective. NEA News, 25(2):4–8, 2007.

    Google Scholar 

  12. Greenpeace. Subject: Calender of Nuclear Accidents and Events (Updated 21st March), 2007. http://archieve.greenpeace.org/comms/nukes/chernob/rep02.html.

  13. L. Hunt, R. Su, and G. Meyer. Global transformations of nonlinear systems. IEEE Trans. Autom. Contr., 25(2):4–8, 2007.

    Google Scholar 

  14. International Atomic Energy Agency. Accident analysis for RBMKs. Safety Reports Series No. 43, IAEA, Vienna, 2005.

    Google Scholar 

  15. International Atomic Energy Agency. Annual Report 2006. IEA, Vienna, 2006.

    Google Scholar 

  16. International Energy Agency. IEA energy technology essentials: Nuclear power. IEA, Vienna, March 2007.

    Google Scholar 

  17. R. Kozma, S. Sato, M. Sakuma, M. Kitamura, and T. Sugiyama. Generalization of knowledge acquired by a reactor core monitoring system based on a neurofuzzy algorithm. Prog. Nucl. Energy, 29:203–214, 1995.

    Article  Google Scholar 

  18. J. Lo. Global bilinearizastion of systems with control appearing linearly. SIAM J. Control, 13:879–884, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Krener. Bilinear and nonlinear realizations of input-output maps. SIAM J. Control, 13(4):827–834, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhian Li, P. M. Pardalos, and S. H. Levine. Space-covering approach and modified Frank-Wolfe algorithm for optimal nuclear reactor reload design. Recent advances in global optimization. Princeton University Press, New Jersey, 1992.

    Google Scholar 

  21. G. Marchuk. Methods of nuclear reactors calculations. Samizdat, Moscow, 1961.

    Google Scholar 

  22. N. J. McCormick. Reliability and risk analysis: methods and nuclear power applications. Academic, New York, 1981.

    Google Scholar 

  23. M. F. Robbe, M. Lepareux, E. Treille, and Y. Cariouc. Numerical simulation of a hypothetical core disruptive accident in a small-scale model of a nuclear reactor. Nucl. Eng. Des., 223(2):159–196, 2003.

    Article  Google Scholar 

  24. A. Veinberg and E. Vigner. Physical theory of nuclear reactors [Russian translation]. IL, Moscow, 1961.

    Google Scholar 

  25. M. L. Wald. Approval is sought for reactors. The New York Times, pages C1–C11, September 25, 2007.

    Google Scholar 

  26. V. Yatsenko. An engineering design method for automatic control of transverse magnetic field in tokamaks. Proceedings of Conference on The 2nd All-Union Conference on the Engineering Problems of Thermonuclear Reactors, pages 272–273, 1981.

    Google Scholar 

  27. V. Yatsenko. Dynamic equivalent systems in the solution of some optimal control problems. Avtomatika, 4:59–65, 1984.

    MathSciNet  Google Scholar 

  28. V. Yatsenko. Methods of risk analysis for energy objects. Proceedings of Conference on International Energy Conference, July 23–28, Las Vegas, Nevada, USA pages 272–273, 2000.

    Google Scholar 

  29. V. Yatsenko. Reliability forecasting of nuclear reactor in fuzzy environment. Proceedings of Conference on Problems of Decision Making Under Uncertainties, pages 54–57, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yatsenko, V.A., Pardalos, P.M., Rebennack, S. (2009). Critical States of Nuclear Power Plant Reactors and Bilinear Modeling. In: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M. (eds) Optimization in the Energy Industry. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88965-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88965-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88964-9

  • Online ISBN: 978-3-540-88965-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics