Skip to main content

Fast Algorithms for Boundary Integral Equations

  • Chapter

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 66))

This article reviews several fast algorithms for boundary integral equations. After a brief introduction of the boundary integral equations for the Laplace and Helmholtz equations, we discuss in order the fast multipole method and its kernel independent variant, the hierarchical matrix framework, the wavelet based method, the high frequency fast multipole method, and the recently proposed multidirectional algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. R. Anderson. An implementation of the fast multipole method without multipoles. SIAM J. Sci. Statist. Comput., 13(4):923–947, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Averbuch, E. Braverman, R. Coifman, M. Israeli, and A. Sidi. Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases. Appl. Comput. Harmon. Anal., 9(1):19–53, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms. I. Comm. Pure Appl. Math., 44(2):141–183, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Science, 31:1225–1252, 1996.

    Article  Google Scholar 

  5. N. Bojarski. K-space formulation of the electromagnetic scattering problems. Technical report, Air Force Avionic Lab. Technical Report AFAL-TR-71-75, 1971.

    Google Scholar 

  6. S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Technical Report 21, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2003.

    Google Scholar 

  7. O. P. Bruno and L. A. Kunyansky. A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys., 169(1):80–110, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys., 216(1):300–325, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys., 155(2):468–498, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Chew, E. Michielssen, J. M. Song, and J. M. Jin, editors. Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., Norwood, MA, USA, 2001.

    Google Scholar 

  11. D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998.

    Google Scholar 

  12. I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

    Google Scholar 

  13. B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput., 29(4):1710–1737 (electronic), 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseudoskeleton approximations. Linear Algebra Appl., 261:1–21, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Greengard. The rapid evaluation of potential fields in particle systems. ACM Distinguished Dissertations. MIT Press, Cambridge, MA, 1988.

    MATH  Google Scholar 

  16. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73(2):325–348, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Greengard and J. Strain. A fast algorithm for the evaluation of heat potentials. Comm. Pure Appl. Math., 43(8):949–963, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Hackbusch. Integral equations, volume 120 of International Series of Numerical Mathematics. Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment, Translated and revised by the author from the 1989 German original.

    Google Scholar 

  19. W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54(4):463–491, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Kress. Linear integral equations, volume 82 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1999.

    Google Scholar 

  21. S. Mallat. A wavelet tour of signal processing. Academic Press Inc., San Diego, CA, 1998.

    MATH  Google Scholar 

  22. P. G. Martinsson and V. Rokhlin. A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys., 205(1):1–23, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Nabors, F. Korsmeyer, F. Leighton, and J. K. White. Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory. SIAM Journal on Scientific and Statistical Computing, 15:713– 735, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Nishimura. Fast multipole accelerated boundary integral equation methods. Applied Mechanics Reviews, 55(4):299–324, 2002.

    Article  Google Scholar 

  25. V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys., 86(2):414–439, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  26. V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal., 1(1):82–93, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys., 196(2):591–626, 2004.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ying, L. (2009). Fast Algorithms for Boundary Integral Equations. In: Engquist, B., Lötstedt, P., Runborg, O. (eds) Multiscale Modeling and Simulation in Science. Lecture Notes in Computational Science and Engineering, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88857-4_3

Download citation

Publish with us

Policies and ethics