Skip to main content

Ion Beams in the Geological Sciences

  • Chapter
  • First Online:
Materials Science with Ion Beams

Part of the book series: Topics in Applied Physics ((TAP,volume 116))

Abstract

This chapter discusses some of the uses of ion-beam technologies in the geological sciences. Most ion-beam methods used in the field are analytical, and we do not attempt to summarize all of these as many will be found in other chapters of this text. Instead, we focus on the applications of ion beams in several specific areas, including trace-element diffusion, alteration processes, and radiation effects in minerals. Of course, each of these specific topics is of importance in more general geological topics such as, for example, geochronology. Here, we focus specifically on some of the applications of ion beams as measurement or as “material-modification” tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.H. Sie, Progress of quantitative micro-PIXE applications in geology and mineralogy. Nucl. Instrum. Methods B 75, 403 (1993)

    Article  ADS  Google Scholar 

  2. Hj. Matzke, Ion beam analysis of ceramics and glasses in nuclear energy. Surf. Interface Anal. 22, 472 (1994)

    Article  Google Scholar 

  3. A. Choudhury, D.W. Palmer, G. Amsel, H. Curien, P. Baruch, Study of oxygen diffusion in quartz by using the nuclear reaction 18O(p,alpha)15N. Solid State Commun. 3, 119 (1965)

    Article  ADS  Google Scholar 

  4. M. Sneeringer, S.R. Hart, N. Shimizu, Strontium and samarium diffusion in diopside. Geochim. Cosmochim. Acta 48, 1589 (1984)

    Article  ADS  Google Scholar 

  5. M.H. Dodson, Closure temperature in cooling geochronological and petrological systems. Contrib. Miner. Petrol. 40, 259 (1973)

    Article  ADS  Google Scholar 

  6. D.J. Cherniak, W.A. Lanford, F.J. Ryerson, Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim. Cosmochim. Acta 55, 1663 (1991)

    Article  ADS  Google Scholar 

  7. D.J. Cherniak, Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem. Geol. 110, 177 (1993)

    Article  Google Scholar 

  8. D.J. Cherniak, Pb diffusion in rutile. Contrib. Miner. Petrol. 139, 198 (2000)

    Article  ADS  Google Scholar 

  9. D.J. Cherniak, E.B. Watson, Pb diffusion in zircon. Chem. Geol. 172, 5 (2001)

    Article  Google Scholar 

  10. D.J. Cherniak, E.B. Watson, T.M. Harrison, M. Grove, Pb diffusion in monazite, A progress report on a combined RBS/SIMS study. Eos Trans. AGU 81/17 (2000)

    Google Scholar 

  11. D.J. Cherniak, Diffusion of Pb in plagioclase and K-feldspar measured by Rutherford backscattering spectroscopy and resonant nuclear reaction analysis. Contrib. Miner. Petrol. 120, 358 (1995)

    Article  ADS  Google Scholar 

  12. D.J. Cherniak, Pb diffusion in Cr diopside, augite, and enstatite, and consideration of the dependence of cation diffusion in pyroxene on oxygen fugacity. Chem. Geol. 177, 381 (2001)

    Article  Google Scholar 

  13. D.J. Cherniak, J.M. Hanchar, E.B. Watson, Diffusion of tetravalent cations in zircon. Contrib. Miner. Petrol. 127, 383 (1997)

    Article  ADS  Google Scholar 

  14. E.B. Watson, D.J. Cherniak, Oxygen diffusion in zircon. Earth Planet. Sci. Lett. 148, 527 (1997)

    Article  ADS  Google Scholar 

  15. O. Jaoul, F. Béjina, F. Élie, F. Abel, Silicon self-diffusion in quartz. Phys. Rev. Lett. 74, 2038 (1995)

    Article  ADS  Google Scholar 

  16. D.J. Cherniak, Rare earth element diffusion in apatite. Geochim. Cosmochim. Acta 64, 3871 (2000)

    Article  ADS  Google Scholar 

  17. G. Amsel, D. Samuel, Microanalysis of the stable isotopes of oxygen by means of nuclear reactions. Anal. Chem. 39, 1689 (1967)

    Article  Google Scholar 

  18. J. Crank, The Mathematics of Diffusion, 2nd edn. (Oxford University Press, Oxford, 1975)

    Google Scholar 

  19. L.C. Feldman, J.W. Mayer, Fundamentals of Surface and Thin Film Analysis (Prentice-Hall, New York, 1998)

    Google Scholar 

  20. J.C. Petit, J.C. Dran, G. Della Mea, Energetic ion beam analysis in the earth sciences. Nature 344, 621 (1990)

    Article  ADS  Google Scholar 

  21. B.C. Sales, C.W. White, L.A. Boatner, A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste. Nucl. Chem. Waste Manag. 4, 281 (1983)

    Article  Google Scholar 

  22. M.C. Magonthier et al., in Proc. 2nd Int. Conf. Natural Glasses, ed. by J. Konta (Charles University, Praha, 1987), pp. 57–64

    Google Scholar 

  23. J.C. Petit, J.C. Dran, G. Della Mea, A. Paccagnella, Dissolution mechanisms of silicate minerals yielded by intercomparison with glasses and rafiation damage studies. Chem. Geol. 78, 219 (1989)

    Article  Google Scholar 

  24. J.F. Ziegler, in SRIM-2000 (IBM Research, Yorktown, 1999)

    Google Scholar 

  25. S.J. Zinkle, C. Kinoshita, Defect production in ceramics. J. Nucl. Mater. 251, 200 (1997)

    Article  ADS  Google Scholar 

  26. B. Park, W.J. Weber, L.R. Corrales, Molecular-dynamics simulation study of threshold displacements and defect formation in zircon. Phys. Rev. B 64, 174108

    Google Scholar 

  27. W.J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods B 166, 98 (2001)

    Article  ADS  Google Scholar 

  28. W.J. Weber, R.C. Ewing, L.M. Wang, The radiation-induced crystalline-to-amorphous transition in zircon. J. Mater. Res. 9, 688 (1994)

    Article  ADS  Google Scholar 

  29. A. Meldrum, L.A. Boatner, W.J. Weber, R.C. Ewing, Radiation damage in zircon and monazite. Geochim. Cosmochim. Acta 62, 2509 (1998)

    Article  ADS  Google Scholar 

  30. M.L. Miller, R.C. Ewing, Image simulation of partially amorphous materials. Ultramicroscopy 48, 203 (1992)

    Article  Google Scholar 

  31. J.F. Gibbons, Ion implantation in semiconductors – part II, Damage production and annealing. Proc. IEEE 60, 1062 (1972)

    Article  Google Scholar 

  32. A. Meldrum, Irradiation-induced amorphization of titanite. Mater. Res. Soc. Symp. Proc. 650 (2008, in press)

    Google Scholar 

  33. L. Nasdala, M. Wenzel, G. Vavra, G. Irmer, T. Wenzel, B. Kober, Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Miner. Petrol. 141, 125 (2001)

    Article  ADS  Google Scholar 

  34. A. Meldrum, S.J. Zinkle, L.A. Boatner, S.X. Wang, L.M. Wang, R.C. Ewing, Effects of dose rate and temperature on the crystalline-to-metamict transformation in the ABO4 orthosilicates. Can. Miner. 37, 207 (1999)

    Google Scholar 

  35. R.C. Ewing, A. Meldrum, S.X. Wang, L.M. Wang, Radiation-induced amorphization, in Transformation Processes in Minerals, ed. by S.A.T. Redfern, M.A. Carpenter (Mineralogical Society of America, Washington, 2000), pp. 319–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meldrum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meldrum, A., Cherniak, D.J. (2009). Ion Beams in the Geological Sciences. In: Bernas, H. (eds) Materials Science with Ion Beams. Topics in Applied Physics, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88789-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88789-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88788-1

  • Online ISBN: 978-3-540-88789-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics